慢性儿童免疫性血小板减少症差异表达基因的生物信息学分析

夏悦昕, 王霓, 张力, 等. 慢性儿童免疫性血小板减少症差异表达基因的生物信息学分析[J]. 临床血液学杂志, 2019, 32(10): 751-755. doi: 10.13201/j.issn.1004-2806-b.2019.10.006
引用本文: 夏悦昕, 王霓, 张力, 等. 慢性儿童免疫性血小板减少症差异表达基因的生物信息学分析[J]. 临床血液学杂志, 2019, 32(10): 751-755. doi: 10.13201/j.issn.1004-2806-b.2019.10.006
XIA Yuexin, WANG Ni, ZHANG Li, et al. Identification of key genes and pathways associated with chronic pediatric ITP by bioinformatics analysis[J]. J Clin Hematol, 2019, 32(10): 751-755. doi: 10.13201/j.issn.1004-2806-b.2019.10.006
Citation: XIA Yuexin, WANG Ni, ZHANG Li, et al. Identification of key genes and pathways associated with chronic pediatric ITP by bioinformatics analysis[J]. J Clin Hematol, 2019, 32(10): 751-755. doi: 10.13201/j.issn.1004-2806-b.2019.10.006

慢性儿童免疫性血小板减少症差异表达基因的生物信息学分析

详细信息
    通讯作者: 于卫建,E-mail:yuweijiandl@163.com
  • 中图分类号: R457.1

Identification of key genes and pathways associated with chronic pediatric ITP by bioinformatics analysis

More Information
  • 目的:探究慢性儿童免疫性血小板减少症(ITP)的关键基因和信号通路,为研究慢性ITP的潜在分子机制提供新的思路。方法:从GEO数据库获得mRNA表达芯片数据集GSE46922,利用GEO2R筛选出DEGs,并利用DAVID对DEGs进行GO功能富集分析和KEGG信号转导通路富集分析。随后,构建PPI蛋白互作网络,筛选核心靶标。结果:筛选出274个表达上调基因,主要参与细胞骨架组构,基于肌动蛋白丝的过程,肌动蛋白纤维组织等生物过程。筛选出496个表达下调基因,主要参与动作电位和肌肉收缩等过程。KEGG分析发现,上调基因主要参与HIF-1信号通路。下调基因主要涉及焦点黏附、Rap1信号通路、PI3K-Akt信号通路、神经信号传递通路、肌动蛋白细胞骨架调控等信号通路。获得11个核心靶标:VEGFA,CCND1,ESR1,MYH14,ERBB2,CDKN3,PVALB,CDC20,CHEK1,MTOR和CFTR。结论:本研究通过生物信息学分析获得慢性ITP的关键基因和信号通路,为研究慢性ITP的发病机制提供了新的思路。核心靶标基因可作为诊断和预后评估的生物标志物。
  • 加载中
  • [1]

    Glanz J,France E,Xu S,et al.A population-based,multisite cohort study of the predictors of chronic idiopathic thrombocytopenic purpura in children[J].Pediatrics,2008,121:506-512.

    [2]

    Rodeghiero F,Stasi R,Gernsheimer T,et al.Standardization of terminology,definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group[J].Blood,2009,113:2386-2393.

    [3]

    Nugent DJ.Immune thrombocytopenic purpura of childhood[J].Hematology Am Soc Hematol Educ Program,2006:97-103.

    [4]

    Semple JW,Milev Y,Cosgrave D,et al.Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity[J].Blood,1996,87:4245-4254.

    [5]

    Del Vecchio GC,Giordano P,Tesse R,et al.Clinical significance of serum cytokine levels and thrombopoietic markers in childhood idiopathic thrombocytopenic purpura[J].Blood Transfus,2012,10:194-199.

    [6]

    Zhang B,Lo C,Shen L,et al.The role of vanin-1 and oxidative stress-related pathways in distinguishing acute and chronic pediatric ITP[J].Blood,2011,117:4569-4579.

    [7]

    Kuang Z,Guo L,Li X.Identification of key genes and pathways associated with classical Hodgkin lymphoma by bioinformatics analysis[J].Mol Med Rep,2017,16:4685-4693.

    [8]

    Jernås M,Hou Y,Stromberg Celind F,et al.Differences in gene expression and cytokine levels between newly diagnosed and chronic pediatric ITP[J].Blood,2013,122:1789-1792.

    [9]

    Liu Z,Liang G,Tan L,et al.High-efficient Screening Method for Identification of Key Genes in Breast Cancer Through Microarray and Bioinformatics[J].Anticancer Res,2017,37:4329-4335.

    [10]

    Xu Z,Zhou Y,Cao Y,et al.Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis[J].Med Oncol,2016,33:130.

    [11]

    Liu J,Li H,Sun L,et al.Aberrantly methylated-differentially expressed genes and pathways in colorectal cancer[J].Cancer Cell Int,2017,17:75.

    [12]

    Liang B,Li C,Zhao J.Identification of key pathways and genes in colorectal cancer using bioinformatics analysis[J].Med Oncol,2016,33:111.

    [13]

    Kanehisa M,Goto S.KEGG:kyoto encyclopedia of genes and genomes[J].Nucleic Acids Res,2000,28:27-30.

    [14]

    Szklarczyk D,Franceschini A,Wyder S,et al.STRING v10:Protein-protein interaction networks,integrated over the tree of life[J].Nucleic Acids Res,2015,D447-D452.

    [15]

    Shannon P,Markiel A,Ozier O,et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks[J].Genome Res,2003,2498-2504.

    [16]

    Liang B,Li C,Zhao J.Identification of key pathways and genes in colorectal cancer using bioinformatics analysis[J].Med Oncol,2016,111.

    [17]

    Clauss M,Gerlach M,Gerlach H,et al.Vascular permeability factor:a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity,and promotes monocyte migration[J].J Exp Med,1990,172:1535-1545.

    [18]

    Wartiovaara U,Salven P,Mikkola H,et al.Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation[J].Thromb Haemost,1998,80:171-175.

    [19]

    Baeriswyl V,Christofori G.The angiogenic switch in carcinogenesis[J].Semin Cancer Biol,2009,19:329-337.

    [20]

    Chen HX,Xu XX,Tan BZ,et al.MicroRNA-29b Inhibits Angiogenesis by Targeting VEGFA through the MAPK/ERK and PI3K/Akt Signaling Pathways in Endometrial Carcinoma[J].Cell Physiol Biochem,2017,41:933-946.

    [21]

    Zhang RY,Liu YY,Qu HP,et al.The angiogenic factors and their soluble receptors in sepsis:friend,foe,or both?[J].Crit Care,2013,17:446.

    [22]

    Gerber HP,McMurtrey A,Kowalski J,et al.Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway.Requirement for Flk-1/KDR activation[J].J Biol Chem,1998,273:30336-30343.

    [23]

    Gerber HP,Condorelli F,Park J,et al.Differential transcriptional regulation of the two VEGF receptor genes.Flt-1,but not Flk-1/KDR,is up-regulated by hypoxia[J].J Biol Chem,1997,272:23659-23667.

    [24]

    Belair DG,Le NN,Murphy WL.Regulating VEGF signaling in platelet concentrates via specific VEGF sequestering[J].Biomater Sci,2016,4:819-825.

    [25]

    Mehta D,Malik AB.Regulating endothelial permeability[J].Physiol Rev,2006,86:279-367.

    [26]

    Mehta D.Focal adhesion kinase regulation of endothelial barrier function,apoptosis,and neovascularization[J].Microvasc Res,2012,83:1-2.

    [27]

    Naikoo NA,Dil-Afroze,Rasool R,et al.Upregulation of vascular endothelial growth factor (VEGF),its role in progression and prognosis of non-small cell lung carcinoma[J].Cancer Genet,2017,216:67-73.

  • 加载中
计量
  • 文章访问数:  457
  • PDF下载数:  714
  • 施引文献:  0
出版历程
收稿日期:  2019-03-15

目录