剪接因子突变与MDS关系研究的新进展

李丽, 安立才, 初晓霞. 剪接因子突变与MDS关系研究的新进展[J]. 临床血液学杂志, 2018, 31(11): 882-886. doi: 10.13201/j.issn.1004-2806.2018.11.018
引用本文: 李丽, 安立才, 初晓霞. 剪接因子突变与MDS关系研究的新进展[J]. 临床血液学杂志, 2018, 31(11): 882-886. doi: 10.13201/j.issn.1004-2806.2018.11.018
New progress in the study of the relationship between splicing factor mutation and myelodysplastic syndrome[J]. J Clin Hematol, 2018, 31(11): 882-886. doi: 10.13201/j.issn.1004-2806.2018.11.018
Citation: New progress in the study of the relationship between splicing factor mutation and myelodysplastic syndrome[J]. J Clin Hematol, 2018, 31(11): 882-886. doi: 10.13201/j.issn.1004-2806.2018.11.018

剪接因子突变与MDS关系研究的新进展

  • 基金项目:

    山东省自然科学基金(No:ZH2015HL074)

    山东省自然科学基金(No:ZR2015HL035)

    烟台市科技发展计划(No:2014w024)

    烟台毓璜顶医院青年启动基金(No:201404)

    北京医学奖励基金(No:YJHYXKYJJ-105)

详细信息
    通讯作者: 初晓霞,E-mail:lucychu66@163.com
  • 中图分类号: R733.7

New progress in the study of the relationship between splicing factor mutation and myelodysplastic syndrome

More Information
  • 加载中
  • [1]

    Wahl MC,Will CL,Luhrmann R.The spliceosome:design principles of a dynamic RNP machine[J].Cell,2009,136:701-718.

    [2]

    Papaemmanuil E,Gerstung M,Malcovati L,et al.Clinical and biological implications of driver mutations in myelodysplastic syndromes[J].Blood,2013,122:3616-3627,3699.

    [3]

    Darman RB,Seiler M,Agrawal AA,et al.Cancer-associated SF3B1 hotspot mutations induce cryptic 3'splice site selection through use of a different branch point[J].Cell Rep,2015,13:1033-1045.

    [4]

    肖志坚.骨髓增生异常综合征的精准诊断与治疗:现况与问题[J].临床血液学杂志,2017,30(5):339-341.

    [5]

    Agrawal AA,Seiler M,Brinton LT,et al.Novel SF3B1 in-frame deletions result in aberrant RNA splicing in CLL patients[J].Blood Adv,2017,1:995-1000.

    [6]

    Makishima H,Visconte V,Sakaguchi H,et al.Mutations in the spliceosome machinery,a novel and ubiquitous pathway in leukemogenesis[J].Blood,2012,119:3203-3210.

    [7]

    Yien YY,Robledo RF,Schultz IJ,et al.TMEM14C is required for erythroid mitochondrial heme metabolism[J].J Clin Invest,2014,124:4294-4304.

    [8]

    Yien YY,Ringel AR,Paw BH.Mitochondrial transport of protoporphyrinogen IX in erythroid cells[J].Oncotarget,2015,6:20742-20743.

    [9]

    Boultwood J,Pellagatti A,Nikpour M,et al.The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts[J].PLoS One,2008,3:e1970.

    [10]

    Savage KI,Gorski JJ,Barros EM,et al.Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability[J].Mol Cell,2014,54:445-459.

    [11]

    Chen M,Manley JL.Mechanisms of alternative splicing regulation:insights from molecular and genomics approaches[J].Nat Rev Mol Cell Biol,2009,10:741-754.

    [12]

    Damm F,Kosmider O,Gelsi-Boyer V,et al.Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes[J].Blood,2012,119:3211-3218.

    [13]

    Kim E,Ilagan J O,Liang Y,et al.SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition[J].Cancer Cell,2015,27:617-630.

    [14]

    许红月,谢彦晖.骨髓增生异常综合征相关基因研究进展[J].临床血液学杂志,2017,30(5):407-412.

    [15]

    Chabot B,Shkreta L.Defective control of pre-messenger RNA splicing in human disease[J].J Cell Biol,2016,212:13-27.

    [16]

    Haferlach T,Nagata Y,Grossmann V,et al.Landscape of genetic lesions in 944 patients with myelodysplastic syndromes[J].Leukemia,2014,28:241-247.

    [17]

    Yoshida K,Sanada M,Shiraishi Y,et al.Frequent pathway mutations of splicing machinery in myelodysplasia[J].Nature,2011,478:64-69.

    [18]

    Yip BH,Steeples V,Repapi E,et al.The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes[J].J Clin Invest,2017,127:2206-2221.

    [19]

    Yildirim E,Kirby JE,Brown DE,et al.Xist RNA is a potent suppressor of hematologic cancer in mice[J].Cell,2013,152:727-742.

    [20]

    Pimentel H,Parra M,Gee S,et al.A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis[J].Nucleic Acids Res,2014,42:4031-4042.

    [21]

    Park SM,Ou J,Chamberlain L,et al.U2AF35(S34F) promotes transformation by directing aberrant ATG7 pre-mRNA 3'end formation[J].Mol Cell,2016,62:479-490.

    [22]

    Okeyo-Owuor T,White BS,Chatrikhi R,et al.U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing[J].Leukemia,2015,29:909-917.

    [23]

    Corrionero A,Minana B,Valcarcel J.Reduced fidelity of branch point recognition and alternative splicing induced by the anti-tumor drug spliceostatin A[J].Genes Dev,2011,25:445-459.

    [24]

    Fan L,Lagisetti C,Edwards CC,et al.Sudemycins,novel small molecule analogues of FR901464,induce alternative gene splicing[J].ACS Chem Biol,2011,6:582-589.

    [25]

    Yokoi A,Kotake Y,Takahashi K,et al.Biological validation that SF3b is a target of the antitumor macrolide pladienolide[J].FEBS J,2011,278:4870-4880.

    [26]

    Lee SC,Dvinge H,Kim E,et al.Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins[J].Nat Med,2016,22:672-678.

    [27]

    Prasad J,Colwill K,Pawson T,et al.The protein kinase Clk/Sty directly modulates SR protein activity:both hyper-and hypophosphorylation inhibit splicing[J].Mol Cell Biol,1999,19:6991-7000.

    [28]

    Muraki M,Ohkawara B,Hosoya T,et al.Manipulation of alternative splicing by a newly developed inhibitor of Clks[J].J Biol Chem,2004,279:24246-24254.

    [29]

    Araki S,Dairiki R,Nakayama Y,et al.Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating pre-mRNA splicing[J].PLoS One,2015,10:e116929.

    [30]

    Havens MA,Hastings ML.Splice-switching antisense oligonucleotides as therapeutic drugs[J].Nucleic Acids Res,2016,44:6549-6563.

  • 加载中
计量
  • 文章访问数:  124
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2018-02-06

目录