贫血患者调节性T细胞与人类白细胞抗原Ⅱ表达对血红蛋白影响分析

兰晓曦, 孙雪静, 马强, 等. 贫血患者调节性T细胞与人类白细胞抗原Ⅱ表达对血红蛋白影响分析[J]. 临床血液学杂志, 2022, 35(12): 861-866. doi: 10.13201/j.issn.1004-2806.2022.12.005
引用本文: 兰晓曦, 孙雪静, 马强, 等. 贫血患者调节性T细胞与人类白细胞抗原Ⅱ表达对血红蛋白影响分析[J]. 临床血液学杂志, 2022, 35(12): 861-866. doi: 10.13201/j.issn.1004-2806.2022.12.005
LAN Xiaoxi, SUN Xuejing, MA Qiang, et al. Effects of regulatory T cell and human leukocyte antigen class Ⅱ molecule expression in anaemia patients on haemoglobin[J]. J Clin Hematol, 2022, 35(12): 861-866. doi: 10.13201/j.issn.1004-2806.2022.12.005
Citation: LAN Xiaoxi, SUN Xuejing, MA Qiang, et al. Effects of regulatory T cell and human leukocyte antigen class Ⅱ molecule expression in anaemia patients on haemoglobin[J]. J Clin Hematol, 2022, 35(12): 861-866. doi: 10.13201/j.issn.1004-2806.2022.12.005

贫血患者调节性T细胞与人类白细胞抗原Ⅱ表达对血红蛋白影响分析

详细信息

Effects of regulatory T cell and human leukocyte antigen class Ⅱ molecule expression in anaemia patients on haemoglobin

More Information
  • 目的人类白细胞抗原Ⅱ(HLA-Ⅱ)由抗原提呈细胞表达直接参与T细胞活化,调节性T细胞(Treg)在免疫系统中发挥调节免疫反应的重要作用。贫血是血液病学常见的疾病,病因众多。本文探讨不同贫血患者与HLA-Ⅱ分子表达及Treg细胞比例之间的相关性。方法以自身免疫性溶血性贫血(AIHA)、骨髓衰竭性疾病(BMFS)、B细胞-浆细胞肿瘤侵犯骨髓、继发于感染或肝肾疾病的慢性病贫血患者为研究对象,检测以上疾病患者HLA-Ⅱ分子表达强度、Treg细胞比例及与贫血程度的相关性。结果所有贫血患者的HLA-Ⅱ类分子表达在淋巴细胞和单核细胞中差异无统计学意义;AIHA患者血红蛋白含量与外周血Treg细胞比例呈负相关;BMFS患者Treg细胞比例与淋巴细胞HLA-Ⅱ表达呈正相关;B细胞-浆细胞肿瘤侵犯骨髓患者血红蛋白含量与淋巴细胞HLA-Ⅱ及HLA-DR表达呈正相关;继发于感染或肝肾疾病的慢性病贫血患者血红蛋白含量与单核细胞HLA-Ⅱ及HLA-DR表达呈负相关,外周血Treg细胞比例与淋巴细胞HLA-Ⅱ及HLA-DR表达呈正相关。结论AIHA、BMFS、B细胞-浆细胞肿瘤侵犯骨髓、继发于感染或肝肾疾病的慢性病贫血患者的单核细胞免疫反应较健康供者活跃;B细胞-浆细胞肿瘤累及骨髓患者的恶性淋巴细胞通过低表达HLA分子来实现免疫逃逸及大量增殖;继发于感染或肝肾疾病的慢性病贫血促进单核细胞的活化,其Treg细胞比例与淋巴细胞HLA-Ⅱ分子表达相关;Treg细胞减少参与AIHA的发生及发展,与外周血主要抗原提呈细胞的HLA-Ⅱ类分子及HLA-DR分子表达无明显相关;BMFS患者Treg细胞比例与淋巴细胞HLA-Ⅱ分子表达呈正相关,而与淋巴细胞HLA-DR分子表达不相关,提示其发病机制尤其复杂。
  • 加载中
  • 图 1  健康对照之一外周血CD4+ CD25+ FoxP3+调节性T细胞比例

    图 2  健康对照之一主要抗原提呈细胞(单核细胞和B淋巴细胞)表面HLA Ⅱ类分子水平、HLA-DR分子表达水平

  • [1]

    Nada AM, Hammouda M. Immunoregulatory T cells, LFA-3 and HLA-DR in autoimmune thyroid diseases[J]. Indian J Endocrinol Metab, 2014, 18(4): 574-581. doi: 10.4103/2230-8210.137524

    [2]

    Jevremovic D, Nanaa A, Geyer SM, et al. Abnormal CD13/HLA-DR Expression Pattern on Myeloblasts Predicts Development of Myeloid Neoplasia in Patients With Clonal Cytopenia of Undetermined Significance[J]. Am J Clin Pathol, 2022, 158(4): 530-536. doi: 10.1093/ajcp/aqac083

    [3]

    Tsuji N, Hosokawa K, Urushihara R, et al. Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15[J]. Leukemia, 2022, 36(6): 1666-1675. doi: 10.1038/s41375-022-01549-6

    [4]

    Gao YL, Yao Y, Zhang X, et al. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis?[J]. Front Immunol, 2022, 13: 829210. doi: 10.3389/fimmu.2022.829210

    [5]

    Chevalier N, Mueller M, Mougiakakos D, et al. Analysis of dendritic cell subpopulations in follicular lymphoma with respect to the tumor immune microenvironment[J]. Leuk Lymphoma, 2016, 57(9): 2150-2160. doi: 10.3109/10428194.2015.1135432

    [6]

    Saunthararajah Y, Nakamura R, Nam JM, et al. HLA-DR15(DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome[J]. Blood, 2002, 100(5): 1570-1574. doi: 10.1182/blood.V100.5.1570.h81702001570_1570_1574

    [7]

    Boegel S, Löwer M, Bukur T, et al. HLA and proteasome expression body map[J]. BMC Med Genomics, 2018, 11(1): 36. doi: 10.1186/s12920-018-0354-x

    [8]

    Jesionek-Kupnicka D, Bojo M, Prochorec-Sobieszek M, et al. HLA-G and MHC Class Ⅱ Protein Expression in Diffuse Large B-Cell Lymphoma[J]. Arch Immunol Ther Exp(Warsz), 2016, 64(3): 225-240. doi: 10.1007/s00005-015-0372-8

    [9]

    de Las Cuevas Allende R, Díaz de Entresotos L, Conde Díez S. Anaemia of chronic diseases: Pathophysiology, diagnosis and treatment[J]. Med Clin(Barc), 2021, 156(5): 235-242.

    [10]

    Petz LD, Garratty G. Immune Hemolytic Anemias[M]. 2nd ed. Philadelphia, Churchill Livingstone, 2004: 1-448.

    [11]

    曲莹莹, 邢莉民, 邵宗鸿. T淋巴细胞在自身免疫性溶血性贫血发病机制中的作用[J]. 国际输血及血液学杂志, 2017, 40(5): 450-454. doi: 10.3760/cma.j.issn.1673-419X.2017.05.016

    [12]

    Ward FJ, Hall AM, Cairns LS, et al. Clonal regulatory T cells specific for a red blood cell autoantigen in human autoimmune hemolytic anemia[J]. Blood, 2008, 111(2): 680-687. doi: 10.1182/blood-2007-07-101345

    [13]

    Ahmad E, Elgohary T, Ibrahim H. Naturally occurring regulatory T cells and interleukins 10 and 12 in the pathogenesis of idiopathic warm autoimmune hemolytic anemia[J]. J Investig Allergol Clin Immunol, 2011, 21(4): 297-304.

    [14]

    Barker RN, Elson CJ. Multiple self epitopes on the rhesus polypeptide stimulate immunologically ignorant human T cells[J]. Eur J Immunol. 1994, 24: 1578-1582. doi: 10.1002/eji.1830240719

    [15]

    Elson CJ, Barker RN, Thompson SJ, et al. Immunologically ignorant autoreactive T cells, epitope spreading and repertoire limitation[J]. Immunol Today, 1995, 16(2): 71-76. doi: 10.1016/0167-5699(95)80091-3

    [16]

    Jersild C, Fog T, Hansen GS, et al. Histocompatibility determinants in multiple sclerosis, with special reference to clinical course[J]. Lancet, 1973, 2(7840): 1221-1225.

    [17]

    Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells[J]. Nat Immunol, 2011, 12(6): 478-484. doi: 10.1038/ni.2018

    [18]

    Markovic-Plese S, Cortese I, Wandinger KP, et al. CD4+CD28-costimulation-independent T cells in multiple sclerosis[J]. J Clin Invest, 2001, 108(8): 1185-1194. doi: 10.1172/JCI200112516

    [19]

    Bielekova B, Sung MH, Kadom N, et al. Expansion and functional relevance of high-avidity myelin-specific CD4+ T cells in multiple sclerosis[J]. J Immunol, 2004, 172(6): 3893-3904. doi: 10.4049/jimmunol.172.6.3893

    [20]

    Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+regulatory T cells in patients with multiple sclerosis[J]. J Exp Med, 2004, 199(7): 971-979. doi: 10.1084/jem.20031579

    [21]

    Laplaud DA, Ruiz C, Wiertlewski S, et al. Blood T-cell receptor beta chain transcriptome in multiple sclerosis. Characterization of the Tcells with altered CDR3 length distribution[J]. Brain, 2004, 127(5): 981-995. doi: 10.1093/brain/awh119

    [22]

    Mohme M, Hotz C, Stevanovic S, et al. HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis[J]. Brain, 2013, 136(Pt 6): 1783-1798.

    [23]

    Ooi JD, Petersen J, Tan YH, et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells[J]. Nature, 2017, 545(7653): 243-247. doi: 10.1038/nature22329

    [24]

    Phelps RG, Rees AJ. The HLA complex in Goodpasture's disease: a model for analyzing susceptibility to autoimmunity[J]. Kidney Int, 1999, 56(5): 1638-1653. doi: 10.1046/j.1523-1755.1999.00720.x

    [25]

    曹蓝, 洪鸣. 骨髓增生异常综合征/骨髓增殖性肿瘤的治疗进展[J]. 临床血液学杂志, 2021, 34(9): 680-683. doi: 10.13201/j.issn.1004-2806.2021.09.017 http://lcxz.cbpt.cnki.net/WKC/WebPublication/paperDigest.aspx?paperID=2ec11d98-e4c0-4215-b78b-4444f99e2bdb

    [26]

    Lee W, Lee GR. Transcriptional regulation and development of regulatory T cells[J]. Exp Mol Med, 2018, 50(3): e456. doi: 10.1038/emm.2017.313

  • 加载中

(2)

计量
  • 文章访问数:  735
  • PDF下载数:  212
  • 施引文献:  0
出版历程
收稿日期:  2022-07-05
修回日期:  2022-09-28
刊出日期:  2022-12-01

目录