FLT3突变急性髓系白血病的全程管理

张钰, 邵若洋, 刘启发. FLT3突变急性髓系白血病的全程管理[J]. 临床血液学杂志, 2023, 36(5): 303-308. doi: 10.13201/j.issn.1004-2806.2023.05.002
引用本文: 张钰, 邵若洋, 刘启发. FLT3突变急性髓系白血病的全程管理[J]. 临床血液学杂志, 2023, 36(5): 303-308. doi: 10.13201/j.issn.1004-2806.2023.05.002
ZHANG Yu, SHAO Ruoyang, LIU Qifa. Therapeutic landscape and clinical management framework of FLT3 mutated acute myeloid leukemia[J]. J Clin Hematol, 2023, 36(5): 303-308. doi: 10.13201/j.issn.1004-2806.2023.05.002
Citation: ZHANG Yu, SHAO Ruoyang, LIU Qifa. Therapeutic landscape and clinical management framework of FLT3 mutated acute myeloid leukemia[J]. J Clin Hematol, 2023, 36(5): 303-308. doi: 10.13201/j.issn.1004-2806.2023.05.002

FLT3突变急性髓系白血病的全程管理

  • 基金项目:
    国家重点研发项目(No:2021YFC2500300-4);国家自然科学基金重大项目(No:82293634)
详细信息
    作者简介:

    刘启发,南方医科大学血液病研究院院长、血液病研究所所长;南方医院血液科主任、教授、主任医师、博士生导师。担任亚太地区血液学会委员,中华医学会血液学分会副主任委员,中华医学会血液学分会感染学组组长,中国老年医学会血液学分会副会长,中国研究型医院学会细胞研究与治疗分会副主任委员,中国医师协会血液医师分会常委,广东省医学会血液学分会主任委员和细胞治疗学会副主任委员,广东省血液肿瘤首席专家。从1983年大学毕业后一直从事血液肿瘤的诊疗和相关基础研究工作,曾在日本东京自治医科大学作为客座研究员进行白血病分子生物学研究工作。在白血病的分子发病机理、肿瘤免疫治疗、造血干细胞移植和免疫功能低下人群感染防治等领域做出较大成绩。曾先后主持3项国家重点研发计划,3项863计划,10项国家自然科学包括重大/重点项目和20余项省部级课题的研究。相关研究成果获国家科技进步二等奖1项、省部级科技成果一等奖3项和二等奖5项。在国内外核心期刊发表论文300余篇,包括NCB, STTT, Lancet Oncol/Haematol, JCO, PNAS, BloodLeukemia等SCI期刊200余篇

    通讯作者: 刘启发,E-mail:liuqifa628@163.com
  • 中图分类号: R733.71

Therapeutic landscape and clinical management framework of FLT3 mutated acute myeloid leukemia

More Information
  • 约30%的新诊断急性髓系白血病(AML)患者携带FMS样受体酪氨酸激酶3(FLT3)基因突变,大多数FLT3突变是近膜结构域内的内部串联重复(ITD),也有少数是酪氨酸激酶结构域(TKD)内的点突变。FLT3抑制剂的应用改变了FLT3突变AML患者的治疗现状与预后。文章就FLT3突变AML的生物学特征,FLT3突变检测与诊断、FLT3抑制剂的应用及异基因造血干细胞移植中的作用等全程管理进行讨论。
  • 加载中
  • 表 1  临床批准的FLT3抑制剂

    FLT3 抑制剂 代/型 适用人群 研究 临床证据
    米哚妥林 Midostaurin 1/Ⅰ 新诊断FLT3突变AML与化疗联合 RATIFY研究
    (NCT00651261)
    FDA批准,2017
    索拉非尼 Sorafenib 1/Ⅱ 难治复发FLT3-ITD AML联合AZA Phase Ⅱ(NCT01254890)
    Phase Ⅱ(NCT02196857)
    NCCN,2019
    吉瑞替尼 Gilterinitib 2/Ⅰ 难治复发FLT3-ITD AML ADMIRAL研究
    (NCT02421939)
    FDA批准,2018
    中国批准,2021
    奎扎替尼 Quizartinib 2/Ⅱ 难治复发FLT3-ITD AML QuANTUM-R研究
    (NCT02039726)
    日本获批,2019
    下载: 导出CSV
  • [1]

    Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: therapeutic paradigm beyond inhibitor development[J]. Cancer Sci, 2020, 111(2): 312-322. doi: 10.1111/cas.14274

    [2]

    Antar AI, Otrock ZK, Jabbour E, et al. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions[J]. Leukemia, 2020, 34(3): 682-696. doi: 10.1038/s41375-019-0694-3

    [3]

    Farrar JE, Schuback HL, Ries RE, et al. Genomic profiling of pediatric acute myeloid leukemia reveals a changing mutational landscape from disease diagnosis to relapse[J]. Cancer Res, 2016, 76(8): 2197-2205. doi: 10.1158/0008-5472.CAN-15-1015

    [4]

    Nelles R, Seymour L, Richmond J, et al. Real world molecular characterisation and clonal evolution of acute myeloid leukaemia reveals therapeutic opportunities and challenges[J]. Pathology, 2023, 55(1): 64-70. doi: 10.1016/j.pathol.2022.07.019

    [5]

    Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN[J]. Blood, 2022, 140(12): 1345-1377. doi: 10.1182/blood.2022016867

    [6]

    Kayser S, Levis MJ. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations[J]. Leuk Lymphoma, 2014, 55(2): 243-255. doi: 10.3109/10428194.2013.800198

    [7]

    Leick MB, Levis MJ. The future of targeting FLT3 activation in AML[J]. Curr Hematol Malig Rep, 2017, 12(3): 153-167. doi: 10.1007/s11899-017-0381-2

    [8]

    Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation[J]. Blood, 2009, 114(24): 5034-5043. doi: 10.1182/blood-2008-12-196055

    [9]

    Smith CC, Levis MJ, Perl AE, et al. Molecular profile of FLT3-mutated relapsed/refractory patients with AML in the phase 3 ADMIRAL study of gilteritinib[J]. Blood Adv, 2022, 6(22): 5886. doi: 10.1182/bloodadvances.2022009077

    [10]

    Lee BH, Williams IR, Anastasiadou E, et al. FLT3 internal tandem duplication mutations induce myeloproliferative or lymphoid disease in a transgenic mouse model[J]. Oncogene, 2005, 24(53): 7882-7892. doi: 10.1038/sj.onc.1208933

    [11]

    Papaemmanuil E, Gerstung M, Bullinger L, et al. Genomic classification and prognosis in acute myeloid leukemia[J]. N Engl J Med, 2016, 374(23): 2209-2221. doi: 10.1056/NEJMoa1516192

    [12]

    Li SP, Li N, Chen Y, et al. FLT3-TKD in the prognosis of patients with acute myeloid leukemia: a meta-analysis[J]. Front Oncol, 2023, 13: 1086846. doi: 10.3389/fonc.2023.1086846

    [13]

    Port M, Böttcher M, Thol F, et al. Prognostic significance of FLT3 internal tandem duplication, nucleophosmin 1, and CEBPA gene mutations for acute myeloid leukemia patients with normal karyotype and younger than 60 years: a systematic review and meta-analysis[J]. Ann Hematol, 2014, 93(8): 1279-1286. doi: 10.1007/s00277-014-2072-6

    [14]

    Bazarbachi A, Bug G, Baron F, et al. Clinical practice recommendation on hematopoietic stem cell transplantation for acute myeloid leukemia patients with FLT3-internal tandem duplication: a position statement from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation[J]. Haematologica, 2020, 105(6): 1507-1516. doi: 10.3324/haematol.2019.243410

    [15]

    Abou Dalle I, Ghorab A, Patel K, et al. Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3-mutant acute myeloid leukemia[J]. Blood Cancer J, 2020, 10(5): 48. doi: 10.1038/s41408-020-0318-1

    [16]

    Rücker FG, Du L, Luck TJ, et al. Molecular landscape and prognostic impact of FLT3-ITD insertion site in acute myeloid leukemia: ratify study results[J]. Leukemia, 2022, 36(1): 90-99. doi: 10.1038/s41375-021-01323-0

    [17]

    Chen F, Sun JY, Yin CX, et al. Impact of FLT3-ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation[J]. Bone Marrow Transplant, 2020, 55(4): 740-748. doi: 10.1038/s41409-019-0721-z

    [18]

    Döhner K, Thiede C, Jahn N, et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia[J]. Blood, 2020, 135(5): 371-380. doi: 10.1182/blood.2019002697

    [19]

    Jahn N, Jahn E, Saadati M, et al. Genomic landscape of patients with FLT3-mutated acute myeloid leukemia(AML)treated within the CALGB 10603/RATIFY trial[J]. Leukemia, 2022, 36(9): 2218-2227. doi: 10.1038/s41375-022-01650-w

    [20]

    Bezerra MF, Lima AS, Piqué-Borràs MR, et al. Co-occurrence of DNMT3A, NPM1, FLT3 mutations identifies a subset of acute myeloid leukemia with adverse prognosis[J]. Blood, 2020, 135(11): 870-875. doi: 10.1182/blood.2019003339

    [21]

    Mat Yusoff Y, Ahid F, Abu Seman Z, et al. Comprehensive analysis of mutations and clonal evolution patterns in a cohort of patients with cytogenetically normal acute myeloid leukemia[J]. Mol Cytogenet, 2021, 14(1): 45. doi: 10.1186/s13039-021-00561-2

    [22]

    McMahon CM, Ferng T, Canaani J, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid leukemia[J]. Cancer Discov, 2019, 9(8): 1050-1063. doi: 10.1158/2159-8290.CD-18-1453

    [23]

    Zhang HJ, Savage S, Schultz AR, et al. Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms[J]. Nat Commun, 2019, 10(1): 244. doi: 10.1038/s41467-018-08263-x

    [24]

    中华医学会血液学分会白血病淋巴瘤学组, 马军, 金洁, 等. 中国复发难治性急性髓系白血病诊疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(8): 624-627.

    [25]

    Levis MJ, Perl AE, Altman JK, et al. A next-generation sequencing-based assay for minimal residual disease assessment in AML patients with FLT3-ITD mutations[J]. Blood Adv, 2018, 2(8): 825-831. doi: 10.1182/bloodadvances.2018015925

    [26]

    Spencer DH, Abel HJ, Lockwood CM, et al. Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data[J]. J Mol Diagn, 2013, 15(1): 81-93. doi: 10.1016/j.jmoldx.2012.08.001

    [27]

    Bolli N, Manes N, McKerrell T, et al. Characterization of gene mutations and copy number changes in acute myeloid leukemia using a rapid target enrichment protocol[J]. Haematologica, 2015, 100(2): 214-222. doi: 10.3324/haematol.2014.113381

    [28]

    Loo S, Dillon R, Ivey A, et al. Pretransplant FLT3-ITD MRD assessed by high-sensitivity PCR-NGS determines posttransplant clinical outcome[J]. Blood, 2022, 140(22): 2407-2411. doi: 10.1182/blood.2022016567

    [29]

    Manara E, Basso G, Zampini M, et al. Characterization of children with FLT3-ITD acute myeloid leukemia: a report from the AIEOP AML-2002 study group[J]. Leukemia, 2017, 31(1): 18-25. doi: 10.1038/leu.2016.177

    [30]

    Xuan L, Wang Y, Huang F, et al. Effect of sorafenib on the outcomes of patients with FLT3-ITD acute myeloid leukemia undergoing allogeneic hematopoietic stem cell transplantation[J]. Cancer, 2018, 124(9): 1954-1963. doi: 10.1002/cncr.31295

    [31]

    Xuan L, Wang Y, Chen J, et al. Sorafenib therapy is associated with improved outcomes for FMS-like tyrosine kinase 3 internal tandem duplication acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2019, 25(8): 1674-1681. doi: 10.1016/j.bbmt.2019.04.018

    [32]

    Stone RM, Mandrekar SJ, Sanford BL, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. N Engl J Med, 2017, 377(5): 454-464. doi: 10.1056/NEJMoa1614359

    [33]

    Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia(QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial[J]. Lancet Oncol, 2019, 20(7): 984-997. doi: 10.1016/S1470-2045(19)30150-0

    [34]

    Erba H, Montesinos P, Vrhovac R, et al. AML-029 quizartinib prolonged overall survival(OS)vs placebo plus intensive induction and consolidation therapy followed by single-agent continuation in patients aged 18-75 years with newly diagnosed FLT3-internal tandem duplication positive(FLT3-ITD+)acute myeloid leukemia(AML)[J]. Clin Lymphoma Myeloma Leuk, 2022, 22: S208-S209.

    [35]

    Knapper S, Russell N, Gilkes A, et al. A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML[J]. Blood, 2017, 129(9): 1143-1154. doi: 10.1182/blood-2016-07-730648

    [36]

    Röllig C, Serve H, Hüttmann A, et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia(SORAML): a multicentre, phase 2, randomised controlled trial[J]. Lancet Oncol, 2015, 16(16): 1691-1699. doi: 10.1016/S1470-2045(15)00362-9

    [37]

    Perl A, Giovanni M, Cortes J, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML[J]. N Engl J Med, 2019, 381(18): 1728-1740. doi: 10.1056/NEJMoa1902688

    [38]

    Sasaki K, Kantarjian HM, Kadia T, et al. Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3-internal tandem duplication mutation-positive acute myeloid leukemia[J]. Cancer, 2019, 125(21): 3755-3766. doi: 10.1002/cncr.32387

    [39]

    National Comprehensive Cancer Network. Acute Myeloid Leukemia[EB/OL]. [2023-03-31]. https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf.

    [40]

    Daver N, Perl AE, Maly J, et al. Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia[J]. J Clin Oncol, 2022, 40(35): 4048-4059. doi: 10.1200/JCO.22.00602

    [41]

    Ma YY, Wu YZ, Shen ZH, et al. Is allogeneic transplantation really the best treatment for FLT3/ITD-positive acute myeloid leukemia? A systematic review[J]. Clin Transplant, 2015, 29(2): 149-160. doi: 10.1111/ctr.12495

    [42]

    Levis M. FLT3/ITD AML and the law of unintended consequences[J]. Blood, 2011, 117(26): 6987-6990. doi: 10.1182/blood-2011-03-340273

    [43]

    Maziarz RT, Levis M, Patnaik MM, et al. Midostaurin after allogeneic stem cell transplant in patients with FLT3-internal tandem duplication-positive acute myeloid leukemia[J]. Bone Marrow Transplant, 2021, 56(5): 1180-1189. doi: 10.1038/s41409-020-01153-1

    [44]

    Xuan L, Wang Y, Huang F, et al. Sorafenib maintenance in patients with FLT3-ITD acute myeloid leukaemia undergoing allogeneic haematopoietic stem-cell transplantation: an open-label, multicentre, randomised phase 3 trial[J]. Lancet Oncol, 2020, 21(9): 1201-1212. doi: 10.1016/S1470-2045(20)30455-1

    [45]

    Burchert A, Bug G, Fritz LV, et al. Sorafenib maintenance after allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia with FLT3-internal tandem duplication mutation(SORMAIN)[J]. J Clin Oncol, 2020, 38(26): 2993-3002. doi: 10.1200/JCO.19.03345

    [46]

    中华医学会血液学分会白血病淋巴瘤学组, 王建祥, 魏辉. 中国成人急性髓系白血病(非急性早幼粒细胞白血病)诊疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(8): 617-623.

    [47]

    Schmalbrock LK, Dolnik A, Cocciardi S, et al. Clonal evolution of acute myeloid leukemia with FLT3-ITD mutation under treatment with midostaurin[J]. Blood, 2021, 137(22): 3093-3104. doi: 10.1182/blood.2020007626

    [48]

    Waldeck S, Rassner M, Keye P, et al. CCL5 mediates target-kinase independent resistance to FLT3 inhibitors in FLT3-ITD-positive AML[J]. Blood, 2017, 130: 3830.

    [49]

    Levis MJ, Smith CC, Perl AE, et al. Phase 1 first-in-human study of irreversible FLT3 inhibitor FF-10101-01 in relapsed or refractory acute myeloid leukemia[J]. J Clin Oncol, 2021, 39(15_suppl): 7008. doi: 10.1200/JCO.2021.39.15_suppl.7008

    [50]

    Ikezoe T, Yang J, Nishioka C, et al. Inhibition of signal transducer and activator of transcription 5 by the inhibitor of Janus kinases stimulates dormant human leukemia CD34+/CD38- cells and sensitizes them to antileukemia agents[J]. Int J Cancer, 2011, 128(10): 2317-2325. doi: 10.1002/ijc.25806

    [51]

    Yang T, Hu MS, Qi WY, et al. Discovery of potent and orally effective dual Janus kinase 2/FLT3 inhibitors for the treatment of acute myelogenous leukemia and myeloproliferative neoplasms[J]. J Med Chem, 2019, 62(22): 10305-10320. doi: 10.1021/acs.jmedchem.9b01348

    [52]

    Short NJ, DiNardo CD, Daver N, et al. A triplet combination of azacitidine, venetoclax and gilteritinib for patients with FLT3-mutated acute myeloid leukemia: results from a phase I/Ⅱ study[J]. Blood, 2021, 138(Suppl 1): 696.

  • 加载中
计量
  • 文章访问数:  1654
  • PDF下载数:  1366
  • 施引文献:  0
出版历程
收稿日期:  2023-04-03
刊出日期:  2023-05-01

目录