去甲基化药物对骨髓增生异常综合征伴骨髓纤维化患者的疗效分析

祝坤, 张婕, 贡蓉. 去甲基化药物对骨髓增生异常综合征伴骨髓纤维化患者的疗效分析[J]. 临床血液学杂志, 2024, 37(5): 333-338. doi: 10.13201/j.issn.1004-2806.2024.05.009
引用本文: 祝坤, 张婕, 贡蓉. 去甲基化药物对骨髓增生异常综合征伴骨髓纤维化患者的疗效分析[J]. 临床血液学杂志, 2024, 37(5): 333-338. doi: 10.13201/j.issn.1004-2806.2024.05.009
ZHU Kun, ZHANG Jie, GONG Rong. Effect of hypomethylating agent on myelodysplastic syndrome with myelofibrosis[J]. J Clin Hematol, 2024, 37(5): 333-338. doi: 10.13201/j.issn.1004-2806.2024.05.009
Citation: ZHU Kun, ZHANG Jie, GONG Rong. Effect of hypomethylating agent on myelodysplastic syndrome with myelofibrosis[J]. J Clin Hematol, 2024, 37(5): 333-338. doi: 10.13201/j.issn.1004-2806.2024.05.009

去甲基化药物对骨髓增生异常综合征伴骨髓纤维化患者的疗效分析

详细信息

Effect of hypomethylating agent on myelodysplastic syndrome with myelofibrosis

More Information
  • 目的 探究去甲基化药物(hypomethylating agent,HMA)在骨髓增生异常综合征(myelodysplastic syndrome,MDS)伴或不伴骨髓纤维化(MF)患者治疗中的临床效果。方法 收集山西白求恩医院2017年1月—2023年9月收治的147例MDS患者,其中MF 0级患者50例,MF 1~3级患者97例。根据骨髓纤维化的严重程度将接受HMA单药治疗的患者分为2组,非纤维化组(MF 0级)27例,纤维化期组(MF 1~3级)59例;根据是否接受HMA单药治疗将MF 1~3级患者分为2组,支持治疗组30例,HMA单药治疗组59例。分别比较2组患者的年龄、性别、血液学指标(白细胞计数、中性粒细胞计数、血红蛋白、血小板计数)、骨髓原始细胞比例、根据IPSS-R与IPSS-M的危险分层、WHO 2016分型、基因突变(TP53ASXL1U2AF1DNMT3ASF3B1TET2JAK2RUNX1)以及治疗疗效。结果 非纤维化组与纤维化期组年龄、白细胞计数、中性粒细胞计数、血红蛋白、骨髓原始细胞比例、根据IPSS-R与IPSS-M的危险分层以及基因突变比较,差异无统计学意义(P>0.05),性别、血小板计数、中位总生存期(overall survival,OS)与中位无进展生存期(progression-free survival,PFS),差异有统计学意义(P < 0.05),对其中74例患者进行了疗效分析,差异无统计学意义(P>0.05);支持治疗组与HMA单药治疗组的年龄、性别、白细胞计数、中性粒细胞计数、血红蛋白以及中位OS、中位PFS比较,差异无统计学意义(P均>0.05),血小板计数、骨髓原始细胞比例、根据IPSS-R及IPSS-M的危险分层、WHO 2016分型、基因突变(ASXL1TET2)差异有统计学意义(P < 0.05)。结论 MDS中骨髓纤维化与预后不良有关。接受HMA单药治疗并不能改善MDS伴骨髓纤维化患者的预后,并且接受HMA单药治疗并不能延长MDS伴骨髓纤维化患者的OS和PFS。
  • 加载中
  • 图 1  骨髓纤维化患者与非纤维化患者的OS比较

    图 2  接受HMA单药治疗的骨髓纤维化患者与非纤维化患者的OS比较

    图 3  接受HMA单药治疗的骨髓纤维化患者与非纤维化患者的PFS比较

    图 4  支持治疗组与HMA单药治疗组的OS比较

    图 5  IPSS-R低危组:支持治疗组与HMA单药治疗组的OS比较

    图 6  IPSS-R高危组:支持治疗组与HMA单药治疗组的OS比较

    图 7  HMA单药治疗组与阿扎胞苷联合维奈克拉治疗组的OS比较

    表 1  接受HMA单药治疗的非纤维化组与纤维化组的临床和实验室数据

    类型 非纤维化组(27例) 纤维化组(59例) P
    年龄/岁 64(46~78) 64(25~81) 0.881
    性别/例(%) 0.049
        男 23(85.19) 38(64.41)
        女 4(14.81) 21(35.59)
    白细胞计数/(×109/L) 1.78(0.30~16.60) 2.40(0.10~205.60) 0.256
    中性粒细胞计数/(×109/L) 0.60(0.10~13.65) 1.06(0.06~196.14) 0.216
    血红蛋白/(g/L) 77(30~127) 71(25~135) 0.216
    血小板计数/(×109/L) 51(6~640) 45(1~252) 0.049
    原始细胞计数/% 6.0(0.5~19.0) 5.0(0~20.0) 0.793
    IPSS-R/例(%) 0.851
        极低危 0 1(1.69)
        低危 3(11.11) 11(18.64)
        中危 8(29.63) 15(25.42)
        高危 11(40.74) 23(38.98)
        极高危 5(18.52) 9(15.25)
    IPSS-M/例(%) 0.098
        极低危 1(3.70) 13(22.03)
        低危 4(14.81) 3(5.08)
        中等偏低危 1(3.70) 1(1.69)
        中等偏高危 4(14.81) 13(22.03)
        高危 11(40.74) 13(22.03)
        极高危 6(22.22) 16(27.12)
    WHO 2016分型/例(%) 0.635
        MDS-SLD 1(3.70) 1(1.69)
        MDS-MLD 5(18.52) 12(20.34)
        MDS-RS-SLD 1(3.70) 2(3.39)
        MDS-RS-MLD 0 4(6.78)
        MDS-del(5q) 1(3.70) 2(3.39)
        MDS-EB-1 9(33.33) 20(33.90)
        MDS-EB-2 10(37.04) 14(23.73)
        MDS-U 0 4(6.78)
    基因突变/例(%)
        TP53 4(14.81) 12(20.34) 0.541
        ASXL1 9(33.33) 14(23.73) 0.350
        U2AF1 5(18.53) 9(15.25) 0.704
        DNMT3A 2(7.41) 8(13.56) 0.409
        SF3B1 3(11.11) 7(11.86) 0.919
        TET2 7(25.93) 7(11.86) 0.101
        JAK2 1(3.70) 6(10.17) 0.309
        RUNX1 8(29.63) 8(13.56) 0.076
    疗效评估(n=74)/例(%) 24(32.43) 50(67.57) 0.140
        CR/PR/SD 19(79.17) 31(62.00)
        PD 5(20.83) 19(38.00)
    下载: 导出CSV

    表 2  支持治疗组与HMA单药治疗组的临床和实验室数据

    类型 支持治疗组(30例) HMA单药治疗组(59例) P
    年龄/岁 60.5(23.0~88.0) 64.0(25.0~81.0) 0.284
    性别/例(%) 0.832
        男 20(66.67) 28(64.41)
        女 10(33.33) 21(35.59)
    白细胞计数/(×109/L) 2.8(0.9~94.9) 2.4(0.1~205.6) 0.825
    中性粒细胞计数/(×109/L) 1.50(0.07~88.64) 1.06(0.06~196.14) 0.860
    血红蛋白/(g/L) 68.5(34.0~135.4) 71.0(25.0~135.0) 0.916
    血小板计数/(×109/L)
    69(6~129 3)

    45(1~252)
    0.015
    原始细胞计数/% 1.2(0.5~10.5) 5.0(0~20) < 0.001
    IPSS-R/例(%) 0.003
        极低危 1(3.33) 1(1.69)
        低危 12(40.00) 11(18.64)
        中危 14(46.67) 15(25.42)
        高危 2(6.67) 23(38.98)
        极高危 1(3.33) 9(15.25)
    IPSS-M/例(%) < 0.001
        极低危 2(6.67) 13(22.03)
        低危 9(30.00) 3(5.08)
        中等偏低危 10(33.33) 1(1.69)
        中等偏高危 3(10.00) 13(22.03)
        高危 3(10.00) 13(22.03)
        极高危 3(10.00) 16(27.12)
    WHO 2016分型/例(%) 0.005
        MDS-SLD 0 1(1.69)
        MDS-MLD 14(46.67) 12(20.34)
        MDS-RS-SLD 2(6.67) 2(3.39)
        MDS-RS-MLD 5(16.67) 4(6.78)
        MDS-del(5q) 2(6.67) 2(3.39)
        MDS-EB-1 1(3.33) 20(33.90)
        MDS-EB-2 2(6.67) 14(23.73)
        MDS-U 4(13.33) 4(6.78)
    基因突变/例(%)
        TP53 3(10.00) 12(20.34) 0.218
        ASXL1 1(3.33) 14(23.73) 0.015
        U2AF1 5(16.67) 9(15.25) 0.863
        DNMT3A 3(10.00) 8(13.56) 0.630
        SF3B1 4(13.33) 7(11.86) 0.842
        TET2 9(30.00) 7(11.86) 0.035
        JAK2 1(3.33) 6(10.17) 0.257
        RUNX1 2(6.67) 8(13.56) 0.330
    下载: 导出CSV
  • [1]

    Gangat N, Patnaik MM, Begna K, et al. Primary Myelodysplastic Syndromes: The Mayo Clinic Experience With 1000 Patients[J]. Mayo Clin Proc, 2015, 90(12): 1623-1638. doi: 10.1016/j.mayocp.2015.08.022

    [2]

    STeensma DP. Myelodysplastic syndromes current treatment algorithm 2018[J]. Blood Cancer J, 2018, 8(5): 47. doi: 10.1038/s41408-018-0085-4

    [3]

    Fu B, Jaso JM, Sargent RL, et al. Bone marrow fibrosis in patients with primary myelodysplastic syndromes has prognostic value using current therapies and new risk stratification systems[J]. Mod Pathol, 2014, 27(5): 681-689. doi: 10.1038/modpathol.2013.187

    [4]

    Ramos F, Robledo C, Izquierdo-garcía FM, et al. Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis[J]. Oncotarget, 2016, 7(21): 30492-30503. doi: 10.18632/oncotarget.9026

    [5]

    Khan M, Muzzafar T, Kantarjian H, et al. Association of bone marrow fibrosis with inferior survival outcomes in chronic myelomonocytic leukemia[J]. Ann Hematol, 2018, 97(7): 1183-1191. doi: 10.1007/s00277-018-3289-6

    [6]

    Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20): 2391-2405. doi: 10.1182/blood-2016-03-643544

    [7]

    Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms[J]. Leukemia, 2022, 36(7): 1703-1719. doi: 10.1038/s41375-022-01613-1

    [8]

    Ebaid A, Cingam SY, Boyce T, et al. Comparative Analysis for Effectiveness of Azacitidine Versus Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes with Marrow Fibrosis: A Single Institution Experience[J]. Blood, 2019, 134(Supplement_1): 5099. doi: 10.1182/blood-2019-131881

    [9]

    Groarke EM, Maung SW, Ewins K, et al. The Role of Marrow Fibrosis in the Prognosis and Treatment of Myelodysplastic Syndromes: a Single Center Retrospective Study[J]. Blood, 2016, 128(22): 5524. doi: 10.1182/blood.V128.22.5524.5524

    [10]

    Hammond D, Jamali M, Wells RA, et al. Impact of Bone Marrow Fibrosis in MDS Patients Treated with Azacitidine[J]. Blood, 2016, 128(22): 4339. doi: 10.1182/blood.V128.22.4339.4339

    [11]

    Reda G, Riva M, Fattizzo B, et al. Bone Marrow Fibrosis and Early Hematological Response as Predictors of Poor Outcome in Azacitidine Treated High Risk-Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia[J]. Semin Hematol, 2018, 55(4): 202-208. doi: 10.1053/j.seminhematol.2018.02.005

    [12]

    Shahidi R, Mohamed M, Sharma A, et al. Bone marrow fibrosis impact on response to azacitidine in myelodysplastic syndromes[J]. Pathology, 2022, 54(6): 763-767. doi: 10.1016/j.pathol.2022.02.011

    [13]

    Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group(IWG)response criteria in myelodysplasia[J]. Blood, 2006, 108(2): 419-425. doi: 10.1182/blood-2005-10-4149

    [14]

    Hoang NM, Rui L. DNA methyltransferases in hematological malignancies[J]. J Genet Genomics, 2020, 47(7): 361-372. doi: 10.1016/j.jgg.2020.04.006

    [15]

    Imataki O, Ishida T, Kubo H, et al. A Case of Tyrosine Kinase Inhibitor-Resistant Chronic Myeloid Leukemia, Chronic Phase with ASXL1 Mutation[J]. Case Rep Oncol, 2020, 13(1): 449-455. doi: 10.1159/000506452

    [16]

    Dolgikh TY, Senchukova SR, Vinogradova EV, et al. Specific Features of Interactions between Megakaryocytic and Granulocytic Hematopoiesis Lineages and Myelofibrosis during the Acute Phase of Chronic Myeloid Leukemia, Chronic Lymphocytic Leukemia, and Multiple Myeloma[J]. Bull Exp Biol Med, 2020, 168(6): 734-738. doi: 10.1007/s10517-020-04791-z

    [17]

    Dolgikh TY, Domnikova NP, Tornuev YV, et al. Incidence of Myelofibrosis in Chronic Myeloid Leukemia, Multiple Myeloma, and Chronic Lymphoid Leukemia during Various Phases of Diseases[J]. Bull Exp Biol Med, 2017, 162(4): 483-487. doi: 10.1007/s10517-017-3645-x

    [18]

    Park SJ, Lee HW, Jeong SH, et al. Acquisition of a BCR-ABL1 transcript in a patient with disease progression from MDS with fibrosis to AML with myelodysplasia-related changes[J]. Ann Clin Lab Sci, 2011, 41(4): 379-384.

    [19]

    Zhang X, Wang F, Yu J, et al. Significance of bone marrow fibrosis in acute myeloid leukemia for survival in the real-world[J]. Front Oncol, 2022, 12: 971082. doi: 10.3389/fonc.2022.971082

    [20]

    Sokol K, Tremblay D, Bhalla S, et al. Implications of Mutation Profiling in Myeloid Malignancies-PART 2: Myeloproliferative Neoplasms and Other Myeloid Malignancies[J]. Oncology(Williston Park), 2018, 32(5): e45-e51.

    [21]

    Craver BM, Elalaoui K, Scherber RM, et al. The Critical Role of Inflammation in the Pathogenesis and Progression of Myeloid Malignancies[J]. Cancers(Basel), 2018, 10(4): 104.

    [22]

    Chifotides HT, Verstovsek S, Bose P. Association of Myelofibrosis Phenotypes with Clinical Manifestations, Molecular Profiles, and Treatments[J]. Cancers(Basel), 2023, 15(13): 3331.

    [23]

    Tefferi A, Lasho TL, Patnaik MM, et al. Targeted next-generation sequencing in myelodysplastic syndromes and prognostic interaction between mutations and IPSS-R[J]. Am J Hematol, 2017, 92(12): 1311-1317. doi: 10.1002/ajh.24901

  • 加载中

(7)

(2)

计量
  • 文章访问数:  367
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2024-01-02
刊出日期:  2024-05-01

目录