血液肿瘤CAR-T细胞治疗后血细胞减少的研究进展

曹钦婷, 冯茹. 血液肿瘤CAR-T细胞治疗后血细胞减少的研究进展[J]. 临床血液学杂志, 2024, 37(5): 366-372. doi: 10.13201/j.issn.1004-2806.2024.05.015
引用本文: 曹钦婷, 冯茹. 血液肿瘤CAR-T细胞治疗后血细胞减少的研究进展[J]. 临床血液学杂志, 2024, 37(5): 366-372. doi: 10.13201/j.issn.1004-2806.2024.05.015
CAO Qinting, FENG Ru. Research progress in cytopenia after CAR-T cell therapy for hematological malignancies[J]. J Clin Hematol, 2024, 37(5): 366-372. doi: 10.13201/j.issn.1004-2806.2024.05.015
Citation: CAO Qinting, FENG Ru. Research progress in cytopenia after CAR-T cell therapy for hematological malignancies[J]. J Clin Hematol, 2024, 37(5): 366-372. doi: 10.13201/j.issn.1004-2806.2024.05.015

血液肿瘤CAR-T细胞治疗后血细胞减少的研究进展

  • 基金项目:
    国家高水平医院临床研究基金(No:BJ-2023-078);北京市自然科学基金(No:7222158)
详细信息
    通讯作者: 冯茹,E-mail:frbld@sina.com
  • 中图分类号: R733

Research progress in cytopenia after CAR-T cell therapy for hematological malignancies

More Information
  • 嵌合抗原受体(CAR)T细胞在血液肿瘤治疗中的有效性得到广泛认可。CAR-T相关不良反应有细胞因子释放综合征(cytokine release syndrome,CRS)、免疫效应细胞相关神经毒性综合征和血液学毒性。CAR-T后血液学毒性是多发性骨髓瘤、B细胞淋巴瘤、急性白血病患者中最常见的3级以上不良反应,受CRS反应及相关细胞因子、骨髓功能、CAR-T结构、清淋化疗、基线血细胞、铁蛋白峰值、既往治疗线数、造血干细胞移植状态等影响。血液学毒性影响患者预后,缩短无进展生存期、总生存期,增加感染风险以及死亡率。CAR-T输注前可使用CAR-HEMATOTOX评分模型进行基线风险评估,输注后可根据最新发表的CAR-T相关血液学毒性(ICAHT)共识进行ICAHT分级管理,以期提高患者生存率,改善预后。
  • 加载中
  • [1]

    Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J]. Proc Natl Acad Sci U S A, 1989, 86(24): 10024-10028. doi: 10.1073/pnas.86.24.10024

    [2]

    Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia[J]. N Engl J Med, 2011, 365(8): 725-733. doi: 10.1056/NEJMoa1103849

    [3]

    Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16): 1507-1517. doi: 10.1056/NEJMoa1407222

    [4]

    Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial[J]. Lancet, 2015, 385(9967): 517-528. doi: 10.1016/S0140-6736(14)61403-3

    [5]

    Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with b-cell lymphoblastic leukemia[J]. N Engl J Med, 2018, 378(5): 439-448. doi: 10.1056/NEJMoa1709866

    [6]

    Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma[J]. N Engl J Med, 2022, 386(7): 640-654. doi: 10.1056/NEJMoa2116133

    [7]

    Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma[J]. N Engl J Med, 2019, 380(1): 45-56. doi: 10.1056/NEJMoa1804980

    [8]

    Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas(TRANSCEND NHL 001): a multicentre seamless design study[J]. Lancet, 2020, 396(10254): 839-852. doi: 10.1016/S0140-6736(20)31366-0

    [9]

    Fowler NH, Dickinson M, Dreyling M, et al. Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial[J]. Nat Med, 2022, 28(2): 325-332. doi: 10.1038/s41591-021-01622-0

    [10]

    Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma[J]. N Engl J Med, 2020, 382(14): 1331-1342. doi: 10.1056/NEJMoa1914347

    [11]

    Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma(CAR-TITUDE-1): a phase 1b/2 open-label study[J]. Lancet, 2021, 398(10297): 314-324. doi: 10.1016/S0140-6736(21)00933-8

    [12]

    Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma[J]. N Engl J Med, 2021, 384(8): 705-716. doi: 10.1056/NEJMoa2024850

    [13]

    Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma[J]. J Hematol Oncol, 2018, 11(1): 141. doi: 10.1186/s13045-018-0681-6

    [14]

    Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma[J]. J Clin Oncol, 2018, 36(22): 2267-2280. doi: 10.1200/JCO.2018.77.8084

    [15]

    Cui Q, Qian C, Xu N, et al. CD38-directed CAR-T cell therapy: a novel immunotherapy strategy for relapsed acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation[J]. J Hematol Oncol, 2021, 14(1): 82. doi: 10.1186/s13045-021-01092-4

    [16]

    Kenderian SS, Ruella M, Shestova O, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia[J]. Leukemia, 2015, 29(8): 1637-1647. doi: 10.1038/leu.2015.52

    [17]

    Pan J, Tan Y, Wang G, et al. Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase Ⅰ trial[J]. J Clin Oncol, 2021, 39(30): 3340-3351. doi: 10.1200/JCO.21.00389

    [18]

    Schubert ML, Schmitt M, Wang L, et al. Side-effect management of chimeric antigen receptor(CAR)T-cell therapy[J]. Ann Oncol, 2021, 32(1): 34-48. doi: 10.1016/j.annonc.2020.10.478

    [19]

    Xiang X, He Q, Ou Y, et al. Efficacy and safety of CAR-modified T cell therapy in patients with relapsed or refractory multiple myeloma: a meta-analysis of prospective clinical trials[J]. Front Pharmacol, 2020, 11: 544754. doi: 10.3389/fphar.2020.544754

    [20]

    Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma(ZUMA-1): a single-arm, multicentre, phase 1-2 trial[J]. Lancet Oncol, 2019, 20(1): 31-42. doi: 10.1016/S1470-2045(18)30864-7

    [21]

    Logue JM, Zucchetti E, Bachmeier CA, et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma[J]. Haematologica, 2021, 106(4): 978-986.

    [22]

    Fried S, Avigdor A, Bielorai B, et al. Early and late hematologic toxicity following CD19 CAR-T cells[J]. Bone Marrow Transplant, 2019, 54(10): 1643-1650. doi: 10.1038/s41409-019-0487-3

    [23]

    Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma[J]. Blood, 2021, 138(24): 2499-2513. doi: 10.1182/blood.2020010543

    [24]

    Neelapu SS, Dickinson M, Munoz J, et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial[J]. Nat Med, 2022, 28(4): 735-742. doi: 10.1038/s41591-022-01731-4

    [25]

    Jacobson CA, Chavez JC, Sehgal AR, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma(ZUMA-5): a single-arm, multicentre, phase 2 trial[J]. Lancet Oncol, 2022, 23(1): 91-103. doi: 10.1016/S1470-2045(21)00591-X

    [26]

    Gauthier J, Gazeau N, Hirayama AV, et al. Impact of CD19 CAR T-cell product type on outcomes in relapsed or refractory aggressive B-NHL[J]. Blood, 2022, 139(26): 3722-3731. doi: 10.1182/blood.2021014497

    [27]

    Sesques P, Ferrant E, Safar V, et al. Commercial anti-CD19 CAR T cell therapy for patients with relapsed/refractory aggressive B cell lymphoma in a European center[J]. Am J Hematol, 2020, 95(11): 1324-1333. doi: 10.1002/ajh.25951

    [28]

    李阳玉, 薛磊, 汪敏, 等. CAR-T细胞治疗复发/难治急性B淋巴细胞白血病后免疫功能的变化及其相关因素分析[J]. 临床血液学杂志, 2022, 35(5): 348-353. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2022.05.010

    [29]

    Wang L, Hong R, Zhou L, et al. New-onset severe cytopenia after CAR-T cell therapy: analysis of 76 patients with relapsed or refractory acute lymphoblastic leukemia[J]. Front Oncol, 2021, 11: 702644. doi: 10.3389/fonc.2021.702644

    [30]

    Shah BD, Ghobadi A, Oluwole OO, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study[J]. Lancet, 2021, 398(10299): 491-502. doi: 10.1016/S0140-6736(21)01222-8

    [31]

    Qi Y, Zhao M, Hu Y, et al. Efficacy and safety of CD19-specific CAR T cell-based therapy in B-cell acute lymphoblastic leukemia patients with CNSL[J]. Blood, 2022, 139(23): 3376-3386. doi: 10.1182/blood.2021013733

    [32]

    Tan Y, Shan L, Zhao L, et al. Long-term follow-up of donor-derived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia[J]. J Hematol Oncol, 2023, 16(1): 34. doi: 10.1186/s13045-023-01427-3

    [33]

    Zhang M, Chen D, Fu X, et al. Autologous nanobody-derived fratricide-resistant CD7-CAR T-cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma[J]. Clin Cancer Res, 2022, 28(13): 2830-2843. doi: 10.1158/1078-0432.CCR-21-4097

    [34]

    Hill LC, Rouce RH, Smith TS, et al. Safety and anti-tumor activity of CD5 CAR T-cells in patients with relapsed/refractory T-cell malignancies[J]. Blood, 2019, 134: 199.

    [35]

    Wang QS, Wang Y, Lv HY, et al. Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia[J]. Mol Ther, 2015, 23(1): 184-191. doi: 10.1038/mt.2014.164

    [36]

    Jin X, Zhang M, Sun R, et al. First-in-human phase Ⅰ study of CLL-1 CAR-T cells in adults with relapsed/refractory acute myeloid leukemia[J]. J Hematol Oncol, 2022, 15(1): 88. doi: 10.1186/s13045-022-01308-1

    [37]

    Zhang H, Wang P, Li Z, et al. Anti-CLL1 chimeric antigen receptor T-cell therapy in children with relapsed/refractory acute myeloid leukemia[J]. Clin Cancer Res, 2021, 27(13): 3549-3555. doi: 10.1158/1078-0432.CCR-20-4543

    [38]

    Gill S, Tasian SK, Ruella M, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells[J]. Blood, 2014, 123(15): 2343-2354. doi: 10.1182/blood-2013-09-529537

    [39]

    Yao S, Jianlin C, Yarong L, et al. Donor-derived CD123-targeted CAR T cell serves as a RIC regimen for haploidentical transplantation in a patient with FUS-ERG+AML[J]. Front Oncol, 2019, 9: 1358. doi: 10.3389/fonc.2019.01358

    [40]

    夏洁云, 徐开林. GPRC5D CAR-T细胞治疗复发/难治性多发性骨髓瘤: 单臂Ⅱ期临床试验[J]. 临床血液学杂志, 2023, 36(7): 477-481. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2023.07.005

    [41]

    Yan Z, Cao J, Cheng H, et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase 2 trial[J]. Lancet Haematol, 2019, 6(10): e521-e529. doi: 10.1016/S2352-3026(19)30115-2

    [42]

    Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma[J]. N Engl J Med, 2019, 380(18): 1726-1737. doi: 10.1056/NEJMoa1817226

    [43]

    Li H, Zhao L, Sun Z, et al. Prolonged hematological toxicity in patients receiving BCMA/CD19 CAR-T-cell therapy for relapsed or refractory multiple myeloma[J]. Front Immunol, 2022, 13: 1019548. doi: 10.3389/fimmu.2022.1019548

    [44]

    Wang L, Hong R, Zhou L, et al. Cytokine profiles are associated with prolonged hematologic toxicities after B-cell maturation antigen targeted chimeric antigen receptor-T-cell therapy[J]. Cytotherapy, 2023, 25(2): 192-201. doi: 10.1016/j.jcyt.2022.11.001

    [45]

    Penack O, Peczynski C, Koenecke C, et al. Severe cytopenia after CD19 CAR T-cell therapy: a retrospective study from the EBMT transplant complications working party[J]. J Immunother Cancer, 2023, 11(4): e006406. doi: 10.1136/jitc-2022-006406

    [46]

    Rejeski K, Hansen DK, Bansal R, et al. The CAR-HEMATOTOX score as a prognostic model of toxicity and response in patients receiving BCMA-directed CAR-T for relapsed/refractory multiple myeloma[J]. J Hematol Oncol, 2023, 16(1): 88. doi: 10.1186/s13045-023-01465-x

    [47]

    卫延辉, 郭学军. 嵌合抗原受体T细胞治疗血液系统恶性肿瘤相关毒性机制研究进展[J]. 新乡医学院学报, 2020, 37(4): 397-401. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYX202004026.htm

    [48]

    Jain T, Knezevic A, Pennisi M, et al. Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies[J]. Blood Adv, 2020, 4(15): 3776-3787. doi: 10.1182/bloodadvances.2020002509

    [49]

    Juluri KR, Wu QV, Voutsinas J, et al. Severe cytokine release syndrome is associated with hematologic toxicity following CD19 CAR T-cell therapy[J]. Blood Adv, 2022, 6(7): 2055-2068. doi: 10.1182/bloodadvances.2020004142

    [50]

    Nagle SJ, Murphree C, Raess PW, et al. Prolonged hematologic toxicity following treatment with chimeric antigen receptor T cells in patients with hematologic malignancies[J]. Am J Hematol, 2021, 96(4): 455-461. doi: 10.1002/ajh.26113

    [51]

    Li Z, Que Y, Wang D, et al. Recovery-model: a model for CAR T-cell-related thrombocytopenia in relapsed/refractory multiple myeloma[J]. Thromb Res, 2023, 227: 62-70. doi: 10.1016/j.thromres.2023.05.016

    [52]

    Giudice V, Cardamone C, Triggiani M, et al. Bone marrow failure syndromes, overlapping diseases with a common cytokine signature[J]. Int J Mol Sci, 2021, 22(2): 705. doi: 10.3390/ijms22020705

    [53]

    Si X, Gu T, Liu L, et al. Hematologic cytopenia post CAR T cell therapy: etiology, potential mechanisms and perspective[J]. Cancer Lett, 2022, 550: 215920. doi: 10.1016/j.canlet.2022.215920

    [54]

    Tam CS, O'brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia[J]. Blood, 2008, 112(4): 975-980. doi: 10.1182/blood-2008-02-140582

    [55]

    Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: recognition and management[J]. Blood, 2016, 127(26): 3321-3330. doi: 10.1182/blood-2016-04-703751

    [56]

    Luo W, Li C, Zhang Y, et al. Adverse effects in hematologic malignancies treated with chimeric antigen receptor(CAR)T cell therapy: a systematic review and Meta-analysis[J]. BMC Cancer, 2022, 22(1): 98. doi: 10.1186/s12885-021-09102-x

    [57]

    Xia Y, Zhang J, Li J, et al. Cytopenias following anti-CD19 chimeric antigen receptor(CAR)T cell therapy: a systematic analysis for contributing factors[J]. Ann Med, 2022, 54(1): 2951-2965.

    [58]

    Hay KA, Hanafi LA, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy[J]. Blood, 2017, 130(21): 2295-2306. doi: 10.1182/blood-2017-06-793141

    [59]

    Schubert ML, Dietrich S, Stilgenbauer S, et al. Feasibility and safety of CD19 chimeric antigen receptor T cell treatment for B cell lymphoma relapse after allogeneic hematopoietic stem cell transplantation[J]. Biol Blood Marrow Transplant, 2020, 26(9): 1575-1580. doi: 10.1016/j.bbmt.2020.04.025

    [60]

    Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1): 47-62. doi: 10.1038/nrclinonc.2017.148

    [61]

    Neelapu SS. Managing the toxicities of CAR T-cell therapy[J]. Hematol Oncol, 2019, 37(S1): 48-52. doi: 10.1002/hon.2595

    [62]

    王玉洁, 王桃, 杨建民. 嵌合抗原受体T细胞免疫疗法预处理方案的研究进展[J]. 国际输血及血液学杂志, 2020, 43(1): 77-81.

    [63]

    Lin Q, Liu X, Han L, et al. Autologous hematopoietic stem cell infusion for sustained myelosuppression after BCMA-CAR-T therapy in patient with relapsed myeloma[J]. Bone Marrow Transplant, 2020, 55(6): 1203-1205. doi: 10.1038/s41409-019-0674-2

    [64]

    Qiu L, Zhu F, Wei G, et al. Idiopathic thrombocytopenic purpura treatment in a relapsed/refractory multiple myeloma patient after chimeric antigen receptor T cell therapy[J]. Regen Ther, 2020, 14: 271-274. doi: 10.1016/j.reth.2020.03.005

    [65]

    Baur R, Jitschin R, Kharboutli S, et al. Thrombopoietin receptor agonists for acquired thrombocytopenia following anti-CD19 CAR-T-cell therapy: a case report[J]. J Immunother Cancer, 2021, 9(7): e002721.

    [66]

    Rejeski K, Subklewe M, Aljurf M, et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations[J]. Blood, 2023, 142(10): 865-877. doi: 10.1182/blood.2023020578

    [67]

    Drillet G, Lhomme F, De Guibert S, et al. Prolonged thrombocytopenia after CAR T-cell therapy: the role of thrombopoietin receptor agonists[J]. Blood Adv, 2023, 7(4): 537-540. doi: 10.1182/bloodadvances.2022008066

    [68]

    Taneja A, Jain T. CAR-T-OPENIA: chimeric antigen receptor T-cell therapy-associated cytopenias[J]. EJHaem, 2022, 3(S1): 32-38. doi: 10.1002/jha2.350

  • 加载中
WeChat 点击查看大图
计量
  • 文章访问数:  261
  • 施引文献:  0
出版历程
收稿日期:  2024-01-10
刊出日期:  2024-05-01

返回顶部

目录