多发性骨髓瘤细胞来源的细胞外囊泡在临床诊疗中的研究进展

徐红佩, 肖淑梅, 王珊, 等. 多发性骨髓瘤细胞来源的细胞外囊泡在临床诊疗中的研究进展[J]. 临床血液学杂志, 2024, 37(9): 672-676. doi: 10.13201/j.issn.1004-2806.2024.09.014
引用本文: 徐红佩, 肖淑梅, 王珊, 等. 多发性骨髓瘤细胞来源的细胞外囊泡在临床诊疗中的研究进展[J]. 临床血液学杂志, 2024, 37(9): 672-676. doi: 10.13201/j.issn.1004-2806.2024.09.014
XU Hongpei, XIAO Shumei, WANG Shan, et al. Research progress of multiple myeloma cell-derived extracellular vesicles in clinical diagnosis and treatment[J]. J Clin Hematol, 2024, 37(9): 672-676. doi: 10.13201/j.issn.1004-2806.2024.09.014
Citation: XU Hongpei, XIAO Shumei, WANG Shan, et al. Research progress of multiple myeloma cell-derived extracellular vesicles in clinical diagnosis and treatment[J]. J Clin Hematol, 2024, 37(9): 672-676. doi: 10.13201/j.issn.1004-2806.2024.09.014

多发性骨髓瘤细胞来源的细胞外囊泡在临床诊疗中的研究进展

  • 基金项目:
    十四五国家重点研发计划专项项目(No:2021YFA1101500);国家自然科学基金重大研究计划(No:92049119);国家自然科学基金面上项目(No:81974009)
详细信息

Research progress of multiple myeloma cell-derived extracellular vesicles in clinical diagnosis and treatment

More Information
  • 多发性骨髓瘤(multiple myeloma,MM)细胞来源的细胞外囊泡(extracellular vesicles,EVs)通过转运特异性生物活性分子进行细胞间通信,参与血管生成、骨溶解、免疫抑制、耐药性等多个过程,因此可以作为有潜力的生物标志物辅助诊断和探索MM治疗的新方式。本文旨在综述其重塑骨髓微环境促进MM进展的机制、与耐药性的关系、作为生物标志物的研究进展、通过作为干扰通信的治疗靶点和工程化改造促进MM治疗的临床前景,分析得出特定MM-EVs的纯化表征、功能分析和安全性是MM-EVs临床转化的重要挑战。
  • 加载中
  • [1]

    冷晴, 刘伟, 管俊. 补体C4在新诊断多发性骨髓瘤患者中的预后价值[J]. 临床血液学杂志, 2023, 36(3): 175-180. doi: 10.13201/j.issn.1004-2806.2023.03.007

    [2]

    van de Donk NWCJ, Pawlyn C, Yong KL. Multiple myeloma[J]. Lancet, 2021, 397(10272): 410-427. doi: 10.1016/S0140-6736(21)00135-5

    [3]

    Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression[J]. Nat Immunol, 2021, 22(5): 560-570. doi: 10.1038/s41590-021-00899-0

    [4]

    Lee JY, Ryu D, Lim SW, et al. Exosomal miR-1305 in the oncogenic activity of hypoxic multiple myeloma cells: a biomarker for predicting prognosis[J]. J Cancer, 2021, 12(10): 2825-2834. doi: 10.7150/jca.55553

    [5]

    Hoelzinger DB, Quinton SJ, Walters DK, et al. Extracellular vesicle proteomic analysis leads to the discovery of HDGF as a new factor in multiple myeloma biology[J]. Blood Adv, 2022, 6(11): 3458-3471. doi: 10.1182/bloodadvances.2021006187

    [6]

    Papanota AM, Karousi P, Kontos CK, et al. Multiple Myeloma Bone Disease: Implication of MicroRNAs in Its Molecular Background[J]. Int J Mol Sci, 2021, 22(5): 2375. doi: 10.3390/ijms22052375

    [7]

    Zhang L, Lei Q, Wang H, et al. Tumor-derived extracellular vesicles inhibit osteogenesis and exacerbate myeloma bone disease[J]. Theranostics, 2019, 9(1): 196-209. doi: 10.7150/thno.27550

    [8]

    Raimondi L, De Luca A, Fontana S, et al. Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE1α Axis[J]. Cancers, 2020, 12(8): 2167. doi: 10.3390/cancers12082167

    [9]

    Raimondo S, Urzì O, Conigliaro A, et al. Extracellular Vesicle microRNAs Contribute to the Osteogenic Inhibition of Mesenchymal Stem Cells in Multiple Myeloma[J]. Cancers, 2020, 12(2): 449. doi: 10.3390/cancers12020449

    [10]

    Sun G, Gu Q, Zheng J, et al. Emerging roles of extracellular vesicles in normal and malignant hematopoiesis[J]. J Clin Invest, 2022, 132(18): e160840. doi: 10.1172/JCI160840

    [11]

    Najaflou M, Shahgolzari M, Khosroushahi AY, et al. Tumor-Derived Extracellular Vesicles in Cancer Immunoediting and Their Potential as Oncoimmunotherapeutics[J]. Cancers, 2022, 15(1): 82. doi: 10.3390/cancers15010082

    [12]

    Shao Q, Deng L, Liu H, et al. Involvement of MM cell-derived exosomes in T lymphocytes immune responses[J]. Oncol Lett, 2020, 20(4): 31.

    [13]

    Moloudizargari M, Redegeld F, Asghari MH, et al. Long-chain polyunsaturated omega-3 fatty acids reduce multiple myeloma exosome-mediated suppression of NK cell cytotoxicity[J]. Daru, 2020, 28(2): 647-659. doi: 10.1007/s40199-020-00372-7

    [14]

    Saltarella I, Lamanuzzi A, Apollonio B, et al. Role of Extracellular Vesicle-Based Cell-to-Cell Communication in Multiple Myeloma Progression[J]. Cells, 2021, 10(11): 3185. doi: 10.3390/cells10113185

    [15]

    Laurenzana I, Trino S, Lamorte D, et al. Multiple Myeloma-Derived Extracellular Vesicles Impair Normal Hematopoiesis by Acting on Hematopoietic Stem and Progenitor Cells[J]. Front Med(Lausanne), 2021, 8: 793040.

    [16]

    Bandari SK, Purushothaman A, Ramani VC, et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior[J]. Matrix Biol, 2018, 65: 104-118. doi: 10.1016/j.matbio.2017.09.001

    [17]

    Faict S, Oudaert I, D'Auria L, et al. The Transfer of Sphingomyelinase Contributes to Drug Resistance in Multiple Myeloma[J]. Cancers, 2019, 11(12): 1823. doi: 10.3390/cancers11121823

    [18]

    Tang JX, Chen Q, Li Q, et al. Exosomal mRNAs and lncRNAs involved in multiple myeloma resistance to bortezomib[J]. Cell Biol Int, 2021, 45(5): 965-975. doi: 10.1002/cbin.11540

    [19]

    Yamamoto T, Nakayama J, Yamamoto Y, et al. SORT1/LAMP2-mediated extracellular vesicle secretion and cell adhesion are linked to lenalidomide resistance in multiple myeloma[J]. Blood Adv, 2022, 6(8): 2480-2495. doi: 10.1182/bloodadvances.2021005772

    [20]

    Malavasi F, Faini AC, Morandi F, et al. Molecular dynamics of targeting CD38 in multiple myeloma[J]. Br J Haematol, 2021, 193(3): 581-591. doi: 10.1111/bjh.17329

    [21]

    Brennan K, Iversen KF, Blanco-Fernández A, et al. Extracellular Vesicles Isolated from Plasma of Multiple Myeloma Patients Treated with Daratumumab Express CD38, PD-L1, and the Complement Inhibitory Proteins CD55 and CD59[J]. Cells, 2022, 11(21): 3365. doi: 10.3390/cells11213365

    [22]

    Lee Y, Ni J, Beretov J, et al. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis[J]. Mol Cancer, 2023, 22(1): 33. doi: 10.1186/s12943-023-01741-x

    [23]

    Manier S, Liu CJ, Avet-Loiseau H, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma[J]. Blood, 2017, 129(17): 2429-2436. doi: 10.1182/blood-2016-09-742296

    [24]

    Luo Y, Gui R. Circulating Exosomal CircMYC Is Associated with Recurrence and Bortezomib Resistance in Patients with Multiple Myeloma[J]. Turk J Haematol, 2020, 37(4): 248-262. doi: 10.4274/tjh.galenos.2020.2020.0243

    [25]

    Zhao A, Kong F, Liu CJ, et al. Tumor Cell-Derived Microvesicles Induced Not Epithelial-Mesenchymal Transition but Apoptosis in Human Proximal Tubular(HK-2) Cells: Implications for Renal Impairment in Multiple Myeloma[J]. Int J Mol Sci, 2017, 18(3): 513. doi: 10.3390/ijms18030513

    [26]

    Sun R, Liu W, Zhao Y, et al. Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related myocardial damage[J]. Cancer Cell Int, 2021, 21(1): 311. doi: 10.1186/s12935-021-02011-w

    [27]

    Lia G, Brunello L, Bruno S, et al. Extracellular vesicles as potential biomarkers of acute graft-vs-host disease[J]. Leukemia, 2018, 32(3): 765-773. doi: 10.1038/leu.2017.277

    [28]

    Laurenzana I, Trino S, Lamorte D, et al. Analysis of Amount, Size, Protein Phenotype and Molecular Content of Circulating Extracellular Vesicles Identifies New Biomarkers in Multiple Myeloma[J]. Int J Nanomedicine, 2021, 16: 3141-3160. doi: 10.2147/IJN.S303391

    [29]

    Cheng Q, Li X, Wang Y, et al. The ceramide pathway is involved in the survival, apoptosis and exosome functions of human multiple myeloma cells in vitro[J]. Acta Pharmacol Sin, 2018, 39(4): 561-568. doi: 10.1038/aps.2017.118

    [30]

    Liu L, Ye Q, Liu L, et al. C6-ceramide treatment inhibits the proangiogenic activity of multiple myeloma exosomes via the miR-29b/Akt pathway[J]. J Transl Med, 2020, 18(1): 298. doi: 10.1186/s12967-020-02468-9

    [31]

    Tu C, Du Z, Zhang H, et al. Endocytic pathway inhibition attenuates extracellular vesicle-induced reduction of chemosensitivity to bortezomib in multiple myeloma cells[J]. Theranostics, 2021, 11(5): 2364-2380. doi: 10.7150/thno.47996

    [32]

    Nishida-Aoki N, Tominaga N, Takeshita F, et al. Disruption of Circulating Extracellular Vesicles as a Novel Therapeutic Strategy against Cancer Metastasis[J]. Mol Ther, 2017, 25(1): 181-191. doi: 10.1016/j.ymthe.2016.10.009

    [33]

    Zhang X, Zhang H, Gu J, et al. Engineered Extracellular Vesicles for Cancer Therapy[J]. Adv Mater, 2021, 33(14): e2005709. doi: 10.1002/adma.202005709

    [34]

    Vulpis E, Loconte L, Peri A, et al. Impact on NK cell functions of acute versus chronic exposure to extracellular vesicle-associated MICA: Dual role in cancer immunosurveillance[J]. J Extracell Vesicles, 2022, 11(1): e12176. doi: 10.1002/jev2.12176

    [35]

    Borrelli C, Ricci B, Vulpis E, et al. Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 Trans-Presentation[J]. Cancer Immunol Res, 2018, 6(7): 860-869. doi: 10.1158/2326-6066.CIR-17-0604

    [36]

    Wu P, Zhang B, Ocansey DKW, et al. Extracellular vesicles: A bright star of nanomedicine[J]. Biomaterials, 2021, 269: 120467. doi: 10.1016/j.biomaterials.2020.120467

    [37]

    Zhou X, Miao Y, Wang Y, et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation[J]. J Extracell Vesicles, 2022, 11(3): e12198. doi: 10.1002/jev2.12198

  • 加载中
计量
  • 文章访问数:  253
  • 施引文献:  0
出版历程
收稿日期:  2023-02-19
刊出日期:  2024-09-01

返回顶部

目录