二代测序在较高危骨髓增生异常性肿瘤预后中的应用

姜亚峰, 崔亚娟. 二代测序在较高危骨髓增生异常性肿瘤预后中的应用[J]. 临床血液学杂志, 2025, 38(5): 365-370. doi: 10.13201/j.issn.1004-2806.2025.05.007
引用本文: 姜亚峰, 崔亚娟. 二代测序在较高危骨髓增生异常性肿瘤预后中的应用[J]. 临床血液学杂志, 2025, 38(5): 365-370. doi: 10.13201/j.issn.1004-2806.2025.05.007
JIANG Yafeng, CUI Yajuan. Application of next-generation sequencing in the prognosis of higher-risk myelodysplastic neoplasms[J]. J Clin Hematol, 2025, 38(5): 365-370. doi: 10.13201/j.issn.1004-2806.2025.05.007
Citation: JIANG Yafeng, CUI Yajuan. Application of next-generation sequencing in the prognosis of higher-risk myelodysplastic neoplasms[J]. J Clin Hematol, 2025, 38(5): 365-370. doi: 10.13201/j.issn.1004-2806.2025.05.007

二代测序在较高危骨髓增生异常性肿瘤预后中的应用

  • 基金项目:
    湖南省自然科学基金(No:2025JJ60629)
详细信息

Application of next-generation sequencing in the prognosis of higher-risk myelodysplastic neoplasms

More Information
  • 目的 分析较高危骨髓增生异常性肿瘤(MDS)的临床和分子遗传学特征,并评价修订的国际预后积分系统(IPSS-R)及MDS分子国际预后评分系统(IPSS-M)对MDS患者的预后价值。方法 纳入中南大学湘雅二医院54例较高危MDS患者,收集患者性别、年龄、临床及实验室检查结果、生存时间。总生存时间(OS)应用Kaplan-Meier曲线分析,组间比较应用log-rank检验。结果 共纳入54例较高危MDS患者,男33例,女21例。中位年龄57(18~87)岁。初诊时中位血红蛋白为69(33~119) g/L,中位中性粒细胞计数为0.64×109/L(0.10×109/L~11.29×109/L),中位血小板计数为45×109/L(8×109/L~395×109/L),中位骨髓原始细胞百分比为9.0%(2.0%~18.0%),11例(20.37%)患者携带复杂核型。54例患者中51例(94.44%)检出至少1个Ⅰ类突变。共有34个突变基因检测到突变总数145个,平均每个患者检测到2.69个突变。最常观察到发生突变的基因是TP53SF3B1BCORASXL1WT1等。TP53基因共在13例患者中检出基因异常。中位随访时间13个月,IPSS-R分组极高危组中位生存时间为17个月,中高危组未达到,差异无统计学意义(P=0.085 9)。IPSS-M分组极高危组中位生存时间为18个月,中高危-高危组未达到,两组1年OS率分别为74%和93%,差异有统计学意义(P=0.044 0)。结论 IPSS-M对本组较高危MDS患者OS具有良好预测能力。建议推进MDS患者进行细胞遗传学及二代测序检查,后续进行多中心、大样本研究,继续验证IPSS-M在MDS预后判断的效力。
  • 加载中
  • 图 1  54例较高危MDS患者常见基因突变频率

    图 2  54例较高危MDS患者基因突变相关信号通路改变情况

    图 3  IPSS-R与IPSS-M预后积分系统在54例较高危MDS分组评估差异

    图 4  IPSS-R预后积分系统极高危与中高危组总生存差异

    图 5  IPSS-M预后积分系统极高危与中高危组总生存差异

    表 1  较高危MDS患者的临床资料特征 中位数(范围),例(%)

    临床特征 数值
    年龄/岁 57(18~87)
    性别
       男 33(61.1)
       女 21(38.9)
    Hb/(g/L) 69(33~119)
    ANC/(×109/L) 0.64(0.10~11.29)
    PLT(×109/L) 45(8~395)
    骨髓原始细胞/% 9.0(2.0~18.0)
    复杂核型 11(20.37)
    分型
       MDS-biTP53 6(11.11)
       MDS-骨髓纤维化 1(1.85)
       MDS-LB 6(11.11)
       MDS-原始细胞增多型 41(75.93)
    下载: 导出CSV
  • [1]

    Sekeres MA, Taylor J. Diagnosis and Treatment of Myelodysplastic Syndromes: A Review[J]. JAMA, 2022, 328(9): 872-880. doi: 10.1001/jama.2022.14578

    [2]

    Ogawa S. Genetics of MDS[J]. Blood, 2019, 133(10): 1049-1059. doi: 10.1182/blood-2018-10-844621

    [3]

    Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution[J]. Blood, 2019, 133(10): 1071-1085. doi: 10.1182/blood-2018-10-844662

    [4]

    Bejar R, Stevenson K, Abdel-Wahab O, et al. Clinical effect of point mutations in myelodysplastic syndromes[J]. N Engl J Med, 2011, 364(26): 2496-2506. doi: 10.1056/NEJMoa1013343

    [5]

    Greenberg PL, Tuechler H, Schanz J, et al. Revised international prognostic scoring system for myelodysplastic syndromes[J]. Blood, 2012, 120(12): 2454-2465. doi: 10.1182/blood-2012-03-420489

    [6]

    Haferlach T, Nagata Y, Grossmann V, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes[J]. Leukemia, 2014, 28(2): 241-247. doi: 10.1038/leu.2013.336

    [7]

    Bernard E, Tuechler H, Greenberg PL, et al. Molecular International Prognostic Scoring System for Myelodysplastic Syndromes[J]. NEJM Evid, 2022, 1(7): EVIDoa2200008.

    [8]

    Hou HA, Tsai CH, Lin CC, et al. Incorporation of mutations in five genes in the revised International Prognostic Scoring System can improve risk stratification in the patients with myelodysplastic syndrome[J]. Blood Cancer J, 2018, 8(4): 39. doi: 10.1038/s41408-018-0074-7

    [9]

    Kewan T, Durmaz A, Bahaj W, et al. Molecular patterns identify distinct subclasses of myeloid neoplasia[J]. Nat Commun, 2023, 14(1): 3136. doi: 10.1038/s41467-023-38515-4

    [10]

    Wu J, Zhang Y, Qin T, et al. IPSS-M has greater survival predictive accuracy compared with IPSS-R in persons ≥ 60 years with myelodysplastic syndromes[J]. Exp Hematol Oncol, 2022, 11(1): 73. doi: 10.1186/s40164-022-00328-4

    [11]

    Huang N, Song Y, Wu L, et al. Validation and improvement of the molecular international prognostic scoring system in Chinese patients with myelodysplastic syndromes[J]. Ann Hematol, 2025, 104(1): 193-206.

    [12]

    Valent P, Horny HP, Bennett JM, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: Consensus statements and report from a working conference[J]. Leuk Res, 2007, 31(6): 727-736. doi: 10.1016/j.leukres.2006.11.009

    [13]

    Valent P, Orazi A, Steensma DP, et al. Proposed minimal diagnostic criteria for myelodysplastic syndromes(MDS)and potential pre-MDS conditions[J]. Oncotarget, 2017, 8(43): 73483-73500. doi: 10.18632/oncotarget.19008

    [14]

    Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms[J]. Leukemia, 2022, 36(7): 1703-1719. doi: 10.1038/s41375-022-01613-1

    [15]

    Grob T, Al Hinai ASA, Sanders MA, et al. Molecular characterization of mutant TP53 acute myeloid leukemia and high-risk myelodysplastic syndrome[J]. Blood, 2022, 139(15): 2347-2354. doi: 10.1182/blood.2021014472

    [16]

    Kaisrlikova M, Vesela J, Kundrat D, et al. RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower-risk MDS[J]. Leukemia, 2022, 36(7): 1898-1906. doi: 10.1038/s41375-022-01584-3

    [17]

    Welch JS, Petti AA, Miller CA, et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes[J]. 2016, 375(21): 2023-2036.

    [18]

    Lontos K, Saliba RM, Kanagal-Shamanna R, et al. TP53 Mutant Variant Allele Frequency and Cytogenetics Determine Prognostic Groups in MDS/AML for Transplantation[J]. Blood Adv, 2025: bloodadvances. 2024014499.

    [19]

    Senapati J, Loghavi S, Garcia-Manero G, et al. Clinical interrogation of TP53 aberrations and its impact on survival in patients with myeloid neoplasms[J]. Haematologica, 2024.

    [20]

    Wang J, Li S, Jiang H, et al. Sintilimab plus decitabine for higher-risk treatment-naïve myelodysplastic syndromes: efficacy, safety, and biomarker analysis of a phase Ⅱ, single-arm trial[J]. J Immunother Cancer, 2024, 12(11): e010355. doi: 10.1136/jitc-2024-010355

    [21]

    Sauta E, Robin M, Bersanelli M, et al. Real-World Validation of Molecular International Prognostic Scoring System for Myelodysplastic Syndromes[J]. J Clin Oncol, 2023, 41(15): 2827-2842. doi: 10.1200/JCO.22.01784

    [22]

    Gurnari C, Gagelmann N, Badbaran A, et al. Outcome prediction in myelodysplastic neoplasm undergoing hematopoietic cell transplant in the molecular era of IPSS-M[J]. Leukemia, 2023, 37(3): 717-719. doi: 10.1038/s41375-023-01820-4

    [23]

    Baer C, Huber S, Hutter S, et al. Risk prediction in MDS: independent validation of the IPSS-M-ready for routine?[J]. Leukemia, 2023, 37(4): 938-941. doi: 10.1038/s41375-023-01831-1

    [24]

    Aguirre LE, Al Ali N, Sallman DA, et al. Assessment and validation of the molecular international prognostic scoring system for myelodysplastic syndromes[J]. Leukemia, 2023, 37(7): 1530-1539. doi: 10.1038/s41375-023-01910-3

  • 加载中
计量
  • 文章访问数:  75
  • 施引文献:  0
出版历程
收稿日期:  2025-03-09
刊出日期:  2025-05-01

返回顶部

目录