The identification of irregular antibodies and autoantibody by the single molecule sequencing technology and serological method
-
摘要: 目的 探讨单分子测序技术联合血清学方法对于不规则抗体及自身抗体的鉴定。方法 将收集的1例不规则抗体筛查阳性患者样本利用单分子测序技术对Rh血型系统和Kidd血型系统红细胞抗原表型进行测序,利用血清学方法进行不规则抗体的筛查和鉴定及血型系统红细胞抗原表型鉴定。结果 采用血清学方法进行不规则抗体鉴定结果为抗E、抗JKb、类抗E抗体和自身抗体; 应用单分子测序方法检测Rh血型系统红细胞抗原表型,检测结果为Ccee,Kidd血型系统红细胞抗原表型,检测结果为JK(a+wb-)。结论 血清学方法不规则抗体鉴定结果与单分子测序技术红细胞抗原表型结果相符,不规则抗体鉴定结果为抗E、抗JKb、类抗E抗体和自身抗体。血清学方法与单分子测序技术相互配合,规避和补充目前的血清学分析的局限性,保证检测结果的准确性,更为患者筛选合适的血液提供指导,确保输血安全。Abstract: Objective To explore the identification of irregular antibodies and autoantibody by the single molecule sequencing technology combined with serological methods.Methods One patient with positive irregular antibody screening was collected, and the phenotypes of red blood cells in Rh blood group system and Kidd blood group system were sequenced by the single molecule sequencing technology, the irregular antibody was screened and identified by serological method and phenotype identification of red blood cells in blood group system were carried out by serological method.Results The results of irregular antibody identification by serological method were anti-E, anti-JKb, anti-E-like antibody and autoantibody. The single molecule sequencing method was used to detect the erythrocyte antigen phenotype of Rh blood group system, and the detection result was Ccee, and the detection result of erythrocyte antigen phenotype of Kidd blood group system was JK(a+wb-) .Conclusion The results of irregular antibody identification by serological method are consistent with the results of erythrocyte antigen phenotype by the single molecule sequencing technology, the results of irregular antibody identification were anti-E, anti-JKb, anti-E-like antibody and autoantibody, and the serological method and the single molecule sequencing technology cooperate with each other to avoid and supplement the limitations of current serological analysis, ensure the accuracy of test results, and provide guidance for patients to screen suitable blood and ensure the safety of blood transfusion.
-
-
表 1 抗筛红细胞试剂盒抗原格局表及不规则抗体筛查结果
序号 Rh-hr Kidd MNS Duffy Lewis P 盐水试管法 微柱凝集法 D C E c e JKa JKb M N S s FYa FYb Lea Leb P1 1 + 0 + + 0 + + + + 0 + + 0 + + 0 0 3+ 2 + + 0 0 + 0 + + + + + + 0 0 + 0 0 2+ 3 + + + + + + + 0 + 0 + + 0 0 + + 0 3+ 自身 0 2+ 表 2 十六系抗筛谱红细胞试剂盒抗原格局表及不规则抗体筛查结果
序号 RH-Hr Kell Duffy RH-Hr C D E c e Cw f V K k Kpa Kpb Jsa Jsb Fya Fyb 1 R1wR1 + + 0 0 + + / / 0 + 0 + / + + 0 2 R1R1 + + 0 0 + 0 / / + + 0 + 0 + 0 + 3 R2R2 0 + + + 0 0 / / + + 0 + 0 + + + 4 R0 0 + 0 + + 0 / / 0 + 0 + / + + 0 5 r′r′ + 0 0 0 + 0 / / 0 + 0 + / + + 0 6 r″r″ 0 0 + + 0 0 / / 0 + 0 + / + 0 + 7 rr 0 0 0 + + 0 / / 0 + 0 + 0 + + 0 8 rr 0 0 0 + + 0 / / 0 + + + 0 + + 0 9 rr 0 0 0 + + 0 / / + 0 0 + / + 0 + 10 rr 0 0 0 + + 0 / / 0 + 0 + 0 + + + 11 RzR1w + + + 0 + + / / 0 + 0 + 0 + 0 + 12 RzR2 + + + + 0 0 / / 0 + 0 + / + + 0 13 rr 0 0 0 + + 0 / / 0 + 0 + / + 0 + 14 r′wr + 0 0 + + + / / 0 + 0 + / + 0 + 15 R2r 0 + + + + 0 / / 0 + 0 + 0 + + + 16 r′r + 0 0 + + 0 / / 0 + 0 + / + + + 自身 序号 Kidd Lewis P MNS Luther Xg a1 a2 a3 a4 Jka Jkb Lea Leb P1 M N S s Lua Lub Xga 1 + 0 0 + + + 0 0 + 0 + + 0 0 0 0 2 0 + 0 + + + + + 0 0 + / 2+ 2+ 1+ 0 3 0 + + 0 + 0 + + + 0 w / 4+ 4+ 1+ 0.5+ 4 + 0 0 + + + 0 + 0 + + + 0 0 0 0 5 + + 0 + + 0 + + + 0 + + 1+ 1+ 0.5+ 0 6 + + 0 + + + 0 + 0 0 + + 4+ 4+ 1+ 0.5+ 7 + 0 0 0 0 + + 0 + + + / 0 0 0 0 8 0 + 0 + + + + 0 + + 0 + 2+ 2+ 1+ 0 9 0 + + 0 + + + 0 + 0 + + 2+ 2+ 1+ 0 10 + 0 0 + + 0 + + 0 0 + / 0 0 0 0 11 + + + 0 + + + 0 + 0 + / 4+ 4+ 0.5+ 0.5+ 12 + + 0 + + + + 0 + 0 + / 4+ 4+ 0.5+ 0.5+ 13 0 + 0 + + 0 + 0 + + + + 2+ 2+ 1+ 0 14 0 + 0 + + + + 0 + 0 + 0 2+ 2+ 1+ 0 15 + + 0 + 0 + + + + + 0 + 4+ 4+ 1+ 0.5+ 16 + + 0 + + + + 0 + 0 + / 2+ 2+ 1+ 0 自身 2+ / / / 注:a1:微柱玻璃珠法检测患者血清抗体; a2:微柱玻璃珠法检测患者红细胞放散液抗体; a3:微柱玻璃珠法检测用CceeJKb+红细胞吸收患者血清后放散液抗体; a4:微柱玻璃珠法检测用CceeJKb-红细胞吸收患者血清后放散液抗体。 表 3 患者红细胞抗原血清学分型
反应条件 Rh MN Kidd Lewis 抗-D 抗-C 抗-c 抗-E 抗-e 抗-M 抗-N 抗-JKa 抗-JKb 抗-Lea 抗-Leb 盐水试管法 4+ 3+ 3+ 0 3+ 0 3+ 1+ 0 0 0 表 4 抗体效价测定
筛检红细胞(检测方法) 1∶1 1∶2 1∶4 1∶8 1∶16 1∶32 1∶64 1∶128 eeJKb+型红细胞(微柱玻璃珠法) 2+ 2+ 1+ 1+w 0 0 0 0 E+JKb+型红细胞(微柱玻璃珠法) 4+ 4+ 3+ 3+ 2+ 1+s 1+w 0 表 5 红细胞抗原基因鉴定结果
表型1 等位基因名称1 突变1 表型2 等位基因名称2 突变2 最终预测表型 JK(a+w) JK*01W.06 c.130G>A; c.588A>G JK(a+w) JK*01W.06 c.130G>A; c.588A>G JK(a+wb-) RH:2 or C
RH:5 or e
RH:7 or CeRHCE*02 or RHCE*Ce c.48G>C; c.150C>T;
c.178C>A; c.201A>G;
c.203A>G; c.307C>TRH:4 or c RH:5 or e RH:6 or f(ce) RHCE*01 or RHCE*ce Ccee -
[1] Chen CX, Tan JZ, Wang LX, et al. Unexpected red blood cell antibody distributions in Chinese people by a systematic literature review[J]. Transfusion, 2016, 56(4): 975-979. doi: 10.1111/trf.13430
[2] 任栋, 赵宏斌, 郭效君, 等. 恶性肿瘤患者血型不规则抗体分布及输血疗效分析[J]. 中国实验血液学杂志, 2023, 31(1): 209-214.
[3] 李慧, 徐焕铭, 张毅, 等. 输血前患者不规则抗体筛查及鉴定结果分析[J]. 中国实验血液学杂志, 2015, 23(3): 861-865.
[4] Wang SN, Wang JH, Mo XM, et al. Analysis of anti-M antibody status and blood transfusion strategy in Hunan, China[J]. Ann Transl Med, 2022, 10(21): 1166. doi: 10.21037/atm-22-4999
[5] Andersen LH, Jacob EK, McThenia SS, et al. Hemolytic disease and reticulocytopenia of the newborn attributable to maternal immunoglobulin G anti-M reacting optimally at cold temperatures[J]. Transfusion, 2021, 61(3): 974-978. doi: 10.1111/trf.16252
[6] Ngoma AM, Mutombo PB, Ikeda K, et al. Red blood cell alloimmunization in transfused patients in sub-Saharan Africa: a systematic review and meta-analysis[J]. Transfus Apher Sci, 2016, 54(2): 296-302. doi: 10.1016/j.transci.2015.10.017
[7] Shastry S, Chenna D, Basavarajegowda A, et al. Red blood cell alloimmunization among recipients of blood transfusion in India: a systematic review and meta-analysis[J]. Vox Sang, 2022, 117(9): 1057-1069. doi: 10.1111/vox.13296
[8] Agrawal S, Chowdhry M, Gajullupalli SP, et al. Autoantibodies mimicking alloantibodies: a case series unveiling the dilemmas of transfusion[J]. Asian J Transfus Sci, 2023, 17(1): 58-62. doi: 10.4103/ajts.ajts_161_20
[9] Simpson JT, Workman RE, Zuzarte PC, et al. Detecting DNA cytosine methylation using nanopore sequencing[J]. Nat Methods, 2017, 14(4): 407-410. doi: 10.1038/nmeth.4184
[10] Altemose N, Logsdon GA, Bzikadze AV, et al. Complete genomic and epigenetic maps of human centromeres[J]. Science, 2022, 376(6588): eabl4178. doi: 10.1126/science.abl4178
[11] Gershman A, Sauria MEG, Guitart X, et al. Epigenetic patterns in a complete human genome[J]. Science, 2022, 376(6588): eabj5089. doi: 10.1126/science.abj5089
[12] Workman RE, Tang AD, Tang PS, et al. Nanopore native RNA sequencing of a human poly(A)transcriptome[J]. Nat Methods, 2019, 16(12): 1297-1305. doi: 10.1038/s41592-019-0617-2
[13] Glinos DA, Garborcauskas G, Hoffman P, et al. Transcriptome variation in human tissues revealed by long-read sequencing[J]. Nature, 2022, 608(7922): 353-359. doi: 10.1038/s41586-022-05035-y
[14] Pratanwanich PN, Yao F, Chen Y, et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore[J]. Nat Biotechnol, 2021, 39(11): 1394-1402. doi: 10.1038/s41587-021-00949-w
[15] Zhuang JL, Chen CN, Fu WY, et al. Third-generation sequencing as a new comprehensive technology for identifying rare α-and β-globin gene variants in thalassemia alleles in the Chinese population[J]. Arch Pathol Lab Med, 2023, 147(2): 208-214. doi: 10.5858/arpa.2021-0510-OA
[16] Korlach J, Bjornson KP, Chaudhuri BP, et al. Real-time DNA sequencing from single polymerase molecules[J]. Methods Enzymol, 2010, 472: 431-455. http://pdfs.semanticscholar.org/f170/3f290739ea83f3f6535f900e538bffe5518b.pdf
[17] Searle B, Müller M, Carell T, et al. Third-generation sequencing of epigenetic DNA[J]. Angew Chem Int Ed, 2023, 62(14): e202215704. doi: 10.1002/anie.202215704
[18] van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology[J]. Trends Genet, 2018, 34(9): 666-681. doi: 10.1016/j.tig.2018.05.008
[19] Nakano K, Shiroma A, Shimoji M, et al. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area[J]. Hum Cell, 2017, 30(3): 149-161. doi: 10.1007/s13577-017-0168-8
[20] Midha MK, Wu MC, Chiu KP. Long-read sequencing in deciphering human genetics to a greater depth[J]. Hum Genet, 2019, 138(11): 1201-1215. http://www.xueshufan.com/publication/2973347226
[21] Mamanova L, Coffey AJ, Scott CE, et al. Target-enrichment strategies for next-generation sequencing[J]. Nat Methods, 2010, 7(2): 111-118. doi: 10.1038/nmeth.1419
[22] Takeshita A, Watanabe H, Yamada C, et al. Erythrocyte alloimmunity and genetic variance: results from the collaborative study of alloimmunity to antigen diversity in Asian populations(all ADP)[J]. Transfus Apher Sci, 2020, 59(5): 102944. doi: 10.1016/j.transci.2020.102944
[23] 阴瑞兰, 魏希建, 徐全民. 微柱玻璃珠法筛查弱阳性不规则抗体的结果分析[J]. 临床血液学杂志, 2024, 37(4): 287-290. doi: 10.13201/j.issn.1004-2806.2024.04.013
[24] Golia S, Tiwari AK, Aggarwal G, et al. Prevalence of unexpected red blood cell antibodies in pregnant women and follow-up of pregnancy outcome in pregnant women treated with intra-uterine transfusion[J]. Asian J Transfus Sci, 2024, 18(1): 45-50. doi: 10.4103/ajts.ajts_46_23
[25] Goss C, Avecilla ST, Garbaini J, et al. Can the interval between antibody identifications be increased for alloimmunized patients?[J]. Transfusion, 2016, 56(2): 334-338. doi: 10.1111/trf.13380
[26] 赵雪瑞, 江晓春. 不规则抗体筛查阳性患者输血治疗对策分析[J]. 临床血液学杂志, 2024, 37(6): 405-408. doi: 10.13201/j.issn.1004-2806.2024.06.007
-
计量
- 文章访问数: 50
- 施引文献: 0