测序技术在地中海贫血诊断中的研究进展

魏燕, 卿吉琳, 赵艺莲, 等. 测序技术在地中海贫血诊断中的研究进展[J]. 临床血液学杂志, 2025, 38(6): 490-496. doi: 10.13201/j.issn.1004-2806.2025.06.014
引用本文: 魏燕, 卿吉琳, 赵艺莲, 等. 测序技术在地中海贫血诊断中的研究进展[J]. 临床血液学杂志, 2025, 38(6): 490-496. doi: 10.13201/j.issn.1004-2806.2025.06.014
WEI Yan, QING Jilin, ZHAO Yilian, et al. Progress of sequencing technologies in the diagnosis of thalassemia[J]. J Clin Hematol, 2025, 38(6): 490-496. doi: 10.13201/j.issn.1004-2806.2025.06.014
Citation: WEI Yan, QING Jilin, ZHAO Yilian, et al. Progress of sequencing technologies in the diagnosis of thalassemia[J]. J Clin Hematol, 2025, 38(6): 490-496. doi: 10.13201/j.issn.1004-2806.2025.06.014

测序技术在地中海贫血诊断中的研究进展

  • 基金项目:
    广西重点研发计划项目(No:桂科AB24010067)
详细信息

Progress of sequencing technologies in the diagnosis of thalassemia

More Information
  • 地中海贫血又称珠蛋白生成障碍性贫血,是一类具有致死性和致残性的遗传性血液病。地中海贫血目前没有理想的治疗方法,在地中海贫血的防治中,用产前诊断的方式来阻止重型地中海贫血患儿的出生十分重要。地中海贫血目前的基因诊断方式仅能检查出常见的23种突变,而基因测序能对复杂及未知的基因型进行高灵敏度的检测,且已经广泛应用于地中海贫血少见基因型的检测中,在胚胎移植前诊断和无创产前诊断中也有应用。文章基于Sanger、NGS、TGS测序技术的原理、优缺点,对基因测序在地中海贫血诊断中的应用价值做一综述。并基于各代测序的特点,做测序方法选择的建议,作为现行筛查诊断策略的补充。
  • 加载中
  • 图 1  地中海贫血新筛查诊断策略

    表 1  各代测序在地中海贫血检测中的优缺点

    测序技术 一代测序 NGS TGS
    读长 700~1 000 bp 100~150 bp 高达几十kb
    错误率 0.001% <1% 13%~20%
    数据通量 较高 很高
    高度同源序列的检测 不准确 不准确 准确
    结构变异检出能力 较差 较差 较高
    是否需要PCR 需要 需要 不需要
    在地中海贫血检测中适用场景 金标准,小片段测序 缺失断点检测 结构变异
    下载: 导出CSV
  • [1]

    Vijian D, Wan Ab Rahman WS, Ponnuraj KT, et al. Molecular detection of alpha thalassemia: a review of prevalent techniques[J]. Medeni Med J, 2021, 36(3): 257-269.

    [2]

    Wang R, Ma XH, Qin ZZ, et al. Global, regional, and national burden of thalassemia during 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019[J]. Pediatr Blood Cancer, 2024, 71(9): e31177. doi: 10.1002/pbc.31177

    [3]

    中华医学会围产医学分会, 中华医学会妇产科学分会产科学组. 地中海贫血妊娠期管理专家共识[J]. 中华围产医学杂志, 2020, 23(9): 577-584.

    [4]

    北京天使妈妈慈善基金会, 北京师范大学中国公益研究院. 中国地中海贫血蓝皮书: 中国地中海贫血防治状况调查报告(2020)[M]. 北京: 中国社会出版社, 2021: 10-15.

    [5]

    吕建新, 王晓春. 临床分子生物学检验技术[M]. 北京: 人民卫生出版社, 2015: 170-171.

    [6]

    Tantiworawit A, Kamolsripat T, Piriyakhuntorn P, et al. Survival and causes of death in patients with alpha and beta-thalassemia in Northern Thailand[J]. Ann Med, 2024, 56(1): 2338246. doi: 10.1080/07853890.2024.2338246

    [7]

    Kyle Cromer M, Camarena J, Martin RM, et al. Gene replacement of α-globin with β-globin restores hemoglobin balance in β-thalassemia-derived hematopoietic stem and progenitor cells[J]. Nat Med, 2021, 27(4): 677-687. doi: 10.1038/s41591-021-01284-y

    [8]

    Farmakis D, Porter J, Taher A, et al. 2021 thalassaemia international federation guidelines for the management of transfusion-dependent thalassemia[J]. Hemasphere, 2022, 6(8): e732. doi: 10.1097/HS9.0000000000000732

    [9]

    Jiang F, Zhou JY, Zuo LD, et al. Utilization of multiple genetic methods for prenatal diagnosis of rare thalassemia variants[J]. Front Genet, 2023, 14: 1208102. doi: 10.3389/fgene.2023.1208102

    [10]

    Wang G, Huang HY, Chen L, et al. Characterization of a novel 8.2 kb deletion causing beta-thalassemia[J]. Clin Biochem, 2024, 133-134: 110832. doi: 10.1016/j.clinbiochem.2024.110832

    [11]

    Fan DM, Yang X, Huang LM, et al. Simultaneous detection of target CNVs and SNVs of thalassemia by multiplex PCR and next-generation sequencing[J]. Mol Med Rep, 2019, 19(4): 2837-2848.

    [12]

    Bortolin S, Black M, Modi H, et al. Analytical validation of the tag-it high-throughput microsphere-based universal array genotyping platform: application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms[J]. Clin Chem, 2004, 50(11): 2028-2036. doi: 10.1373/clinchem.2004.035071

    [13]

    秦丹卿, 姚翠泽, 王继成, 等. PCR-流式荧光杂交用于8005例地中海贫血产前基因诊断的回顾性分析[J]. 中华检验医学杂志, 2022, 45(5): 483-487.

    [14]

    Eid OM, Eid MM, Farid M, et al. MLPA as a genetic assay for the prenatal diagnosis of common aneuploidy: the first Egyptian experience[J]. J Genet Eng Biotechnol, 2022, 20(1): 112. doi: 10.1186/s43141-022-00402-8

    [15]

    Yuregir OO, Ayaz A, Yalcintepe S, et al. Detection of α-thalassemia by using multiplex ligation-dependent probe amplification as an additional method for rare mutations in southern Turkey[J]. Indian J Hematol Blood Transfus, 2016, 32(4): 454-459. doi: 10.1007/s12288-015-0617-z

    [16]

    Schouten J, van Vught P, Galjaard RJ. Multiplex ligation-dependent probe amplification(MLPA)for prenatal diagnosis of common aneuploidies[J]. Methods Mol Biol, 2019, 1885: 161-170.

    [17]

    Luo SQ, Chen XY, Zeng DY, et al. The value of single-molecule real-time technology in the diagnosis of rare thalassemia variants and analysis of phenotype-genotype correlation[J]. J Hum Genet, 2022, 67(4): 183-195.

    [18]

    Sanger F, Air GM, Barrell BG, et al. Nucleotide sequence of bacteriophage phi X174 DNA[J]. Nature, 1977, 265(5596): 687-695.

    [19]

    Kircher M, Kelso J. High-throughput DNA sequencing-concepts and limitations[J]. BioEssays, 2010, 32(6): 524-536.

    [20]

    Hassan S, Bahar R, Johan MF, et al. Next-generation sequencing(NGS)and third-generation sequencing(TGS)for the diagnosis of thalassemia[J]. Diagnostics(Basel), 2023, 13(3): 373.

    [21]

    Hogner S, Lundman E, Strand J, et al. Newborn genetic screening-still a role for Sanger sequencing in the era of NGS[J]. Int J Neonatal Screen, 2023, 9(4): 67.

    [22]

    Shooter C, Rooks H, Thein SL, et al. Next generation sequencing identifies a novel rearrangement in the HBB cluster permitting to-the-base characterization[J]. Hum Mutat, 2015, 36(1): 142-150.

    [23]

    Aziz MA, Khan WA, Banu B, et al. Prenatal diagnosis and screening of thalassemia mutations in Bangladesh: presence of rare mutations[J]. Hemoglobin, 2020, 44(6): 397-401.

    [24]

    Krier JB, Kalia SS, Green RC. Genomic sequencing in clinical practice: applications, challenges, and opportunities[J]. Dialogues Clin Neurosci, 2016, 18(3): 299-312.

    [25]

    Lin YM, Zheng QZ, Zheng TW, et al. Expanded newborn screening for inherited metabolic disorders and genetic characteristics in a southern Chinese population[J]. Clin Chim Acta, 2019, 494: 106-111.

    [26]

    Maiga H, Morrison RD, Duffy PE. Sanger sequencing and deconvolution of polyclonal infections: a quantitative approach to monitor drug-resistant Plasmodium falciparum[J]. EBioMedicine, 2024, 103: 105115.

    [27]

    Mandlik JS, Patil AS, Singh S. Next-generation sequencing(NGS): platforms and applications[J]. J Pharm Bioallied Sci, 2024, 16(Suppl 1): S41-S45.

    [28]

    Lee JY. The principles and applications of high-throughput sequencing technologies[J]. Dev Reprod, 2023, 27(1): 9-24.

    [29]

    Zhu N, Zhang DY, Wang WL, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733.

    [30]

    Midha MK, Wu MC, Chiu KP. Long-read sequencing in deciphering human genetics to a greater depth[J]. Hum Genet, 2019, 138(11-12): 1201-1215.

    [31]

    Xu LP, Mao AP, Liu H, et al. Long-molecule sequencing: a new approach for identification of clinically significant DNA variants in α-thalassemia and β-thalassemia carriers[J]. J Mol Diagn, 2020, 22(8): 1087-1095.

    [32]

    Ling XT, Wang CH, Li LL, et al. Third-generation sequencing for genetic disease[J]. Clin Chim Acta, 2023, 551: 117624.

    [33]

    Ardui S, Ameur A, Vermeesch JR, et al. Single molecule real-time(SMRT)sequencing comes of age: applications and utilities for medical diagnostics[J]. Nucleic Acids Res, 2018, 46(5): 2159-2168.

    [34]

    Rhoads A, Au KF. PacBio sequencing and its applications[J]. Genomics Proteomics Bioinformatics, 2015, 13(5): 278-289.

    [35]

    van Dijk EL, Jaszczyszyn Y, Naquin D, et al. The third revolution in sequencing technology[J]. Trends Genet, 2018, 34(9): 666-681.

    [36]

    Zhuang JL, Chen CN, Fu WY, et al. Third-generation sequencing as a new comprehensive technology for identifying rare α-and β-globin gene variants in thalassemia alleles in the Chinese population[J]. Arch Pathol Lab Med, 2023, 147(2): 208-214.

    [37]

    Long J, Sun L, Gong FF, et al. Third-generation sequencing: a novel tool detects complex variants in the α-thalassemia gene[J]. Gene, 2022, 822: 146332.

    [38]

    Hoff KJ. The effect of sequencing errors on metagenomic gene prediction[J]. BMC Genomics, 2009, 10: 520.

    [39]

    Rieber N, Zapatka M, Lasitschka B, et al. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies[J]. PLoS One, 2013, 8(6): e66621.

    [40]

    van Dijk EL, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology[J]. Trends Genet, 2014, 30(9): 418-426.

    [41]

    Watson M, Warr A. Errors in long-read assemblies can critically affect protein prediction[J]. Nat Biotechnol, 2019, 37(2): 124-126.

    [42]

    Ren ZM, Li WJ, Xing ZH, et al. Detecting rare thalassemia in children with Anemia using third-generation sequencing[J]. Hematology, 2023, 28(1): 2241226.

    [43]

    Bashyam MD, Bashyam L, Savithri GR, et al. Molecular genetic analyses of beta-thalassemia in South India reveals rare mutations in the beta-globin gene[J]. J Hum Genet, 2004, 49(8): 408-413.

    [44]

    Gallienne AE, Iberson NM, Dréau HM, et al. Characterization of a novel deletion causing beta-thalassemia major in an Afghan family[J]. Hemoglobin, 2010, 34(1): 110-114.

    [45]

    de Koning TJ, Jongbloed JDH, Sikkema-Raddatz B, et al. Targeted next-generation sequencing panels for monogenetic disorders in clinical diagnostics: the opportunities and challenges[J]. Expert Rev Mol Diagn, 2015, 15(1): 61-70.

    [46]

    Zhuang JL, Zhang N, Zheng Y, et al. Molecular characterization of similar Hb Lepore Boston-Washington in four Chinese families using third generation sequencing[J]. Sci Rep, 2024, 14(1): 9966.

    [47]

    Xu Z, Hu LP, Liu YY, et al. Comparison of third-generation sequencing and routine polymerase chain reaction in genetic analysis of thalassemia[J]. Arch Pathol Lab Med, 2024, 148(3): 336-344.

    [48]

    阳彦, 刘艳秋, 陆清, 等. 基于高通量测序的单体型分析在地中海贫血-HLA配型的植入前遗传学诊断中的应用[J]. 中华医学遗传学杂志, 2019, 36(11): 1090-1093.

    [49]

    何天文, 卢建, 陈创奇, 等. 采用二代测序对α/β复合型地中海贫血夫妇进行胚胎植入前遗传学诊断[J]. 中国实验血液学杂志, 2021, 29(4): 1275-1279.

    [50]

    Erlich HA, López-Peña C, Carlberg KT, et al. Noninvasive prenatal test for β-thalassemia and sickle cell disease using probe capture enrichment and next-generation sequencing of DNA in maternal plasma[J]. J Appl Lab Med, 2022, 7(2): 515-531.

    [51]

    Jiang FM, Liu WQ, Zhang LM, et al. Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage(RHDO): a feasibility study[J]. Sci Rep, 2021, 11(1): 5714.

    [52]

    冯宝莹, 韦洁, 黄秀宁, 等. 广西出生缺陷预防控制现状及发展策略[J]. 广西医学, 2024, 46(1): 1-9.

    [53]

    罗冰星, 翁俊岭, 乔静怡, 等. 国内外地中海贫血防控政策对比及启示[J]. 中国初级卫生保健, 2023, 37(12): 24-27.

    [54]

    Rigter T, Henneman L, Kristoffersson U, et al. Reflecting on earlier experiences with unsolicited findings: points to consider for next-generation sequencing and informed consent in diagnostics[J]. Hum Mutat, 2013, 34(10): 1322-1328.

    [55]

    Bunnik EM, Dondorp WJ, Bredenoord AL, et al. Mainstreaming informed consent for genomic sequencing: a call for action[J]. Eur J Cancer, 2021, 148: 405-410.

  • 加载中
计量
  • 文章访问数:  42
  • 施引文献:  0
出版历程
收稿日期:  2024-10-16
刊出日期:  2025-06-01

返回顶部

目录