TRF、RBP 在慢性肾功能不全患者诊疗中的临床价值

秦雪! 吴钦良! 王兵! 姜玉章!

[摘要] 目的:探讨血清转铁蛋白(TRF)和视黄醇结合蛋白(RBP)水平在慢性肾功能不全(CRF)患者诊疗中的临床价值。方法:收集 231 例确诊的 CRF 患者血清样本,依我国 CRF 分期方法,将患者分为 3 组:肾功能不全失代偿组(106 例)、肾功能衰竭组(53 例)、尿毒症组(72 例),同时设正常对照组 30 例。各组均检测血清 TRF、RBP、中性粒细胞明胶酶相关脂质运载蛋白(NGAL)、尿素氮(BUN)、肌酐(CREA)、脱抑素 C(Cys-C)、前白蛋白(PA)、白蛋白(ALB)及红细胞分布宽度(RDW)水平。结果:肾功能不全失代偿组、肾功能衰竭组、尿毒症组NGAL、BUN与正常对照组相比均有不同程度的升高,TRF 有不同程度的降低,差异均有统计学意义(均 P < 0.05)。肾功能衰竭组和尿毒症组 RBP、Cys-C 均高于肾功能不全失代偿组和正常对照组。相关性分析显示RBP、CREA、Cys-C 与 CFR 均呈现显著的正相关(P < 0.01),且 RBP、TRF 与 PA、ALB、RDW-CV 呈显著负相关(P < 0.01)。结论:RBP和 TRF可以作为评估 CRF 患者的营养状况及疾病进展的有效指标。

[关键词] 转铁蛋白;视黄醇结合蛋白;红细胞分布宽度;慢性肾功能不全

doi: 10. 13201/j. issn. 1004-2806-b. 2019. 02. 014

[中图分类号] R692.5 [文献标志码] A

Correlation study of transferrin and retinol binding protein in patients with chronic renal failure

QIN Xue WU Qinliang WANG Bing JIANG Yuzhang

(The Hospital Affiliated of Huaian No. 1 People Nanjing Medical University, Huaian, 223001, China)

Abstract Objective: To evaluate the roles of transferrin(TRF) and retinol binding protein(RBP) in patients with chronic renal failure(CRF). Method: All serum samples analyzed for this study were collected from 231 patients with CRF(CREA>200 μ mol/L). According to the CFR staging criteria of China and levers of CREA, the patients were divided into the following groups: renal insufficiency group(n=106), renal failure group(n=53) and uremic group(n=72). Healthy subjects from physical examination were also enrolled as control group(n=30). RDW-CV and biochemical indexes including serum TRF and RBP levels were measured in all subjects. Result: NGAL and BUN was significantly higher in renal insufficiency group, renal failure group and uremic group groups than those in control group. Nevertheless, TRF was significantly lower. RBP and Cys-C was significantly higher in renal insufficiency group and control group. The differences were statistically significant(P < 0.05). Association analysis showed that RBP, CREA and Cys-C were positively correlated with CFR(P < 0.01), and RBP and TRF were negatively correlated with PA, ALB and RDW-CV(P < 0.01). Conclusion: RBP and TRF can be used as evaluation indexes for nutritional status of the patients with kidney disease and as effective indicators for disease progression.

Key words transferrin; retinol binding protein; red blood cell distribution width; chronic renal insufficiency

随着人口老龄化、疾病谱改变以及生活方式的变化,我国慢性肾脏病患病率达 10.8% $^{\Box}$ 。在临床日常诊疗工作中,通常是依据患者的肾功能指标来对慢性肾功能不全(conditional random field, CRF)进行评价,如内生肌酐清除率、肾小球滤过率以及尿 β_2 -微球蛋白等。但是这些指标检测过程中存在较多的影响因素,导致检测结果容易出现偏差,在一定程度上不能准确反映患者的肾功能情况 $^{\Box}$ 。本研究旨在结合尿素氮(urea nitrogen, BUN)、肌酐(creatinine, CREA)、胱抑素 C(cystatin C, Cys-C)、中性粒细胞明胶酶相关脂质运载蛋

白(neutrophil gelatinaseassociated lipocalin, NGAL) 水平探讨血清转铁蛋白(transferrin, TRF)、视黄醇结合蛋白(retinol-binding protein, RBP)、红细胞分布宽度(red blood cell distribution width, RDW)等在 CRF 疾病诊治、预后以及患者营养状况评估中的临床价值。

1 资料与方法

1.1 研究对象

231 例血清标本来源于 2017-01—2017-03 我院住院的确诊肾功能不全患者,按我国 CRF 分期:肾功能不全失代偿组(177 < CREA< 442 μ mol/L) 106 例,肾功能衰竭组($442 \le$ CREA< 707 μ mol/L) 1053 例,尿毒症组(CREA> 707 μ mol/L) 1053 例,尿毒症组(1553 例,尿毒症组(1553 例,尿毒症组(1553 例)

¹南京医科大学附属淮安第一医院检验科(江苏淮安, 223001)

30 例正常对照组来源于健康体检正常样本。

1.2 方法

所有人选者均空腹 8 h 后采集静脉血。利用全自动血细胞分析仪(SYSMEX XE-2100)进行血细胞分析,得出 RDW-CV。同时,利用全自动生化分析仪(RL7600)进行 RBP、TRF、PA、ALB、NGAL、Cys-C、CREA 和 BUN 等生化指标检测,其中 RBP、TP 和 ALB 试剂由上海科华生物工程股份有限公司提供、PA 试剂由浙江东瓯诊断产品有限公司提供、TRF 由宁波美康生物科技股份有限公司提供,均采用免疫比浊法检测; NGAL 由北京九强生物技术股份有限公司提供,采用胶乳增强免疫比浊法检测; CREA 和 BUN 试剂由宁波瑞源有限公司提供,采用酶比色法检测; Cys-C 试剂由广东虹业抗体科技有限公司提供,采用液相透射比浊法检测; 24 h 尿白蛋白定量试剂由宁波美康生物

科技股份有限公司提供,上述指标均严格按照试剂 说明书进行操作。

1.3 统计学方法

采用 SPSS 11.0 软件进行统计学分析。正态分布计量资料以 $x\pm s$ 表示,多组间比较采用单因素方差分析,非正态分布计量资料以中位数(四分位间距)表示,采用秩和检验,两变量间的相关性分析采用 Spearman 相关分析。

2 结果

2.1 不同 CRF 组和对照组一般临床资料与生化 检测指标的比较

肾功能不全失代偿组、肾功能衰竭组、尿毒症组 NGAL、BUN 与正常对照组比较均有不同程度的升高,TRF有不同程度的降低,差异均有统计学意义;肾功能衰竭组和尿毒症组 RBP、Cys-C 均高于其他 2 组,差异均有统计学意义,见表 1~3。

表 1 各组一般临床资料与常见肾功能变化

 $\bar{x} \pm s$

组别	例数(男/女)	年龄/岁	24 h 尿白蛋白定量	$BUN/(mmol \cdot L^{-1})$
正常对照组	30(14/16)	52.00 ± 5.69	/	5.63 ± 0.88
肾功能不全失代偿组	106(64/42)	59.48 \pm 17.52 $^{1)}$	1 347.78 \pm 1 075.10	24.60 ± 53.22^{10}
肾功能衰竭组	53(30/23)	54.00 ± 16.06	$2\ 296.58\pm2\ 293.45$	$26.39 \pm 11.26^{1)2}$
尿毒症组	72(44/28)	47.06 ± 14.65^{2}	3 148.54 \pm 1 862.65 ²⁾	$25.59 \pm 9.40^{1)2}$

与正常对照组比较,10P<0.05;与肾功能不全失代偿组比较,20P<0.05。

表 2 不同组别 RBP、TRF、RDW 和 NGAL 的水平变化

 $\bar{x} \pm s$

组别	RDW-CV/ %	Cys-C/(μ g • ml ⁻¹)	$RBP/(mg \cdot L^{-1})$	NGAL/(ng • ml ⁻¹)
正常对照组	12.83 ± 0.73	/	40.69 \pm 14.31	40.92±6.08
肾功能不全失代偿组	14.33 ± 2.09^{1}	4.30 ± 1.93	64.68 ± 35.65	$69.32 \pm 25.33^{1)}$
肾功能衰竭组	14.41 ± 3.10	6.02 ± 2.74^{2}	$81.08 \pm 41.44^{1)}$	78.00 \pm 20.45 $^{1)}$
尿毒症组	13. 37 ± 1.25^{2}	9. $31 \pm 5.92^{2)3}$	102.96 ± 40.48^{112}	78.67 \pm 14.05 ¹⁾

与正常对照组比较,10P<0.05;与肾功能不全失代偿组比较,20P<0.05;与肾功能衰竭组比较,30P<0.05。

表 3 不同组别营养学指标水平的变化

 $\bar{x} \pm s$

组别	PA/(mg • L ⁻¹)	$TP/(g \cdot L^{-1})$	$ALB/(g \cdot L^{-1})$	$TRF/(mg \cdot L^{-1})$
正常对照组	/	/	/	2.95 ± 0.36
肾功能不全失代偿组	230.83 ± 150.15	126.66 ± 590.06	34.04 ± 8.64	$1.75\pm0.74^{1)}$
肾功能衰竭组	266.69 ± 162.71	58.92 ± 9.60	33.12 \pm 6.39	$1.65\pm0.71^{1)}$
尿毒症组	356.51 ± 172.06^{23}	73.05 \pm 63.68 ³⁾	39. $15 \pm 4.97^{2)3}$	1.88 ± 0.66^{1}

与正常对照组比较,10P<0.05;与肾功能不全失代偿组比较,20P<0.05;与肾功能衰竭组比较,30P<0.05。

2.2 肾功能不全患者 TRF、RBP 与各指标的相关性

Spearman 相关分析显示 RBP 与 CREA 及 Cys-C 均呈现显著的正相关(P<0.01); RBP、TRF 与 PA、ALB、RDW-CV 呈显著负相关(P<0.01), 差异均有统计学意义,见表 4。

3 讨论

CRF 预后较差,对生命造成极大的威胁。 CREA 是最常用的反映肾功能的临床指标。其随 着肾功能的降低逐渐升高⁽³⁾。Cys-C 在评估肾功能损害方面同样具有非常重要的价值⁽⁴⁻⁵⁾。本研究结果也证实 CREA 与 Cys-C 均可作为评估 CRF的疗效指标。

RBP是肝脏合成的低分子量蛋白,可自由通过肾小球滤过膜并在近端肾小管被绝大部分重吸收。研究证实,血清 RBP 水平是反映肾小管早起损伤的良好指标。有研究认为其也是反映早期营

表 4 肾功能不全患者 TRF、RBP 与各指标的相关性

 指标	RBP		TF	TRF	
1日 7小	r	P	r	P	
NGAL	0.346	0.006	-0.339	0.007	
RDW-CV	-0.216	0.001	-0.288	0.001	
BUN	-0.013	0.843	-0.076	0.239	
CREA	0.474	0.001	-0.030	0.641	
PA	0.670	0.001	0.415	0.001	
TP	0.009	0.907	-0.025	0.738	
ALB	0.470	0.001	0.508	0.001	
Cys-C	0.355	0.001	0.079	0.243	
24 h 尿蛋白	-0.189	0.183	0.135	0.344	
24 h 尿白蛋白定量	-0.077	0.600	0.197	0.176	

注:以 P < 0.05 时,认为存在相关;r 为负数,为负相关;r 为正数,是正相关。

养状况的敏感指标。本研究结果显示,肾功能衰竭组和尿毒症组RBP水平均显著升高;RBP与Cys-C、CREA、慢性肾脏病进展的标记物NGAL均呈现显著正相关(P<0.01),提示RBP在单独用于肾脏疾病早期诊断中有着重要意义,可进一步指导临床实践。

TRF 也是在肝脏内合成的,半衰期 8.8 d,其受促红细胞生成素和铁剂水平的影响,与机体营养不良具有一定的相关性。TRF 相对分子质量较小,生理状态下很难通过肾小球滤过膜,当出现肾脏损伤时,TRF 可作为肾小管早期损伤的敏感指标。本研究结果显示,CRF 早期患者血清 TRF 水平即显著降低,与 RBP 呈负相关,进一步证实RBP、TRF 可作为反映肾脏疾病状态的良好指标,与文献报道一致。另外,RBP 和 TRF 与 PA、ALB均表现出高度正相关(P < 0.01),提示两者对于评估肾脏疾病患者自身营养状况有重要的临床价值。

随着肾小球滤过率的下降,CRF患者容易出现蛋白质-热能营养不良,成为肾脏疾病病程恶化的独立危险因素之一,严重影响患者预后。研究显示 RBP、TRF与临床上反映机体蛋白质营养状况的生化指标 PA、ALB呈显著负相关(P<0.01)。因此,尽早检测血清 RBP和 TRF水平不仅可以尽

早监测肾脏疾病的进展,而且可以评估肾脏疾病患者的营养状况,为 CRF 的诊断和治疗提供有效观察指标。

已有报道证实,RDW升高与心血管系统疾病、肾功能不全、糖尿病肾病等疾病的发生与进展关联密切^[6-83]。贫血在慢性肾脏疾病中的发病率较高^[9],本研究发现RDW与RBP、TRF均存在负相关关系,RDW与RBP、TRF联合检测对评价CRF的重要指导意义,还有待进一步研究。

参考文献

- [1] Jha V, Garcia-Garcia G, Iseki K, et L. Chronic kidney disease: global dimension and perspectives [J]. Lancet, 2013, 382: 260-272.
- [2] 池晓华. GFR 评估方法比较及 GFR 影响因素分析 [D]. 南方医科大学,2017.
- [4] 王晓燕.血清脁抑素 C、β2-微球蛋白、视黄醇结合蛋白、尿微量白蛋白及 N-乙酰-β-D-氨基葡萄糖苷酶在诊断糖尿病早期肾损伤中的临床意义[J]. 新乡医学院学报,2017,34(2):143-146.
- [5] 杨箫,裴明,杨洪涛. 胱抑素 C 在临床肾脏病中的应用 [J]. 中国中西医结合肾病杂志,2016,17(6):544-545.
- [6] Söderholm M.Borné Y.Hedblad B.et al. Red cell distribution width in relation to incidence of stroke and carotid atherosclerosis: a population-based cohort study[J]. PLoS One, 2015, 10:e0124957.
- [7] Turgutalp K, Kiykim A, Bardak S, et al. Is the red cell distribution width strong predictor for treatment response in primary glomerulonephritides? [J]. Renal Failure, 2014, 36:1083—1089.
- [8] Magri C J, Fava S. Red blood cell distribution width and diabetes-associated complications [J]. Diabetes Metab Syndr, 2014, 8:13-17.
- [9] 中国医师协会肾内科医师分会肾性贫血诊断与治疗中国专家共识(2014修订版)[J]. 中华肾脏病杂志, 2014,30(9):712-716.

(收稿日期:2018-10-09)