Y-染色体mini-STR分型二代测序技术应用于无创产前亲权鉴定的可行性研究

宋文倩, 肖南, 周世航, 等. Y-染色体mini-STR分型二代测序技术应用于无创产前亲权鉴定的可行性研究[J]. 临床血液学杂志, 2022, 35(2): 90-95. doi: 10.13201/j.issn.1004-2806.2022.02.002
引用本文: 宋文倩, 肖南, 周世航, 等. Y-染色体mini-STR分型二代测序技术应用于无创产前亲权鉴定的可行性研究[J]. 临床血液学杂志, 2022, 35(2): 90-95. doi: 10.13201/j.issn.1004-2806.2022.02.002
SONG Wenqian, XIAO Nan, ZHOU Shihang, et al. Feasibility study of Y-chromosome mini-STRs-based next-generation sequencing for non-invasive prenatal paternity testing[J]. J Clin Hematol, 2022, 35(2): 90-95. doi: 10.13201/j.issn.1004-2806.2022.02.002
Citation: SONG Wenqian, XIAO Nan, ZHOU Shihang, et al. Feasibility study of Y-chromosome mini-STRs-based next-generation sequencing for non-invasive prenatal paternity testing[J]. J Clin Hematol, 2022, 35(2): 90-95. doi: 10.13201/j.issn.1004-2806.2022.02.002

Y-染色体mini-STR分型二代测序技术应用于无创产前亲权鉴定的可行性研究

  • 基金项目:
    辽宁省大连市青年科技之星项目(No:2017RQ169)
详细信息

Feasibility study of Y-chromosome mini-STRs-based next-generation sequencing for non-invasive prenatal paternity testing

More Information
  • 目的 评价基于Y-染色体mini-STR的二代测序技术(NGS)通过检测孕妇血浆中胎儿遗传物质完成无创产前亲权鉴定的可行性。方法 从24位孕妇外周血中提取游离胎儿DNA(cffDNA),用Illumina NextSeq 500平台对cffDNA同时进行12个mini-STR基因座的NGS测序分型。cffDNA基因分型结果通过胎儿父亲基因型来验证。对每一组的分型结果计算亲权相关参数。结果 对父亲和出生后的婴儿采用常规的毛细管电泳法(CE)做亲子鉴定,证实了24对父亲和胎儿均具有亲子关系。其中13组男性胎儿的cffDNA所有等位基因均与父亲相同,而1组男性胎儿的cffDNA分型在DYS393出现与父亲不同的等位基因,证实为基因突变;10组女性胎儿的cffDNA均无等位基因检出。利用当地人群单倍型频率可以计算累积亲权指数(CPI)和亲权概率。13组无基因突变的男性胎儿的亲权概率为98.269 9%~99.882 8%,基因突变组的亲权概率为14.871 9%。结论 本研究初步证明了基于NGS的Y-染色体mini-STR用于无创产前亲权鉴定具有较高的准确性,可用于部分案件中在不损伤受害人和胎儿的前提下排除无关男性,并且可以将调查范围扩大到胎儿的所有男性生物学亲属。
  • 加载中
  • 图 1  DNA文库构建与NGS原理

    图 2  实验流程与数据处理示意图

    图 3  每个血浆DNA样本每个基因座的NGS测序read数量

    图 4  NGS与CE检测全部STR基因座的目的片段长度

    表 1  14组男性胎儿cffDNA与其父亲亲权鉴定相关参数

    样本编号 单倍型频率 CPI 亲权概率/%
    1 0.001 174 852 99.882 8
    2 0.017 606 56.8 98.269 9
    3 0.001 174 852 99.882 8
    4 0.003 521 284 99.649 1
    5 0.005 869 170.4 99.416 6
    6 0.001 174 852 99.882 8
    7 0.003 521 284 99.649 1
    8 0.001 174 852 99.882 8
    9 0.001 174 852 99.882 8
    10 0.003 521 284 99.649 1
    11 0.001 174 852 99.882 8
    12 0.001 174 852 99.882 8
    13 0.002 347 426 99.765 8
    141) 0.003 521 0.1746 6 14.869 0
    1)存在基因座DYS393等位基因突变。
    下载: 导出CSV
  • [1]

    Beta J, Lesmes-Heredia C, Bedetti C, et al. Risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review of the literature[J]. Minerva Ginecol, 2018, 70(2): 215-219.

    [2]

    Christiansen SL, Jakobsen B, Børsting C, et al. Non-invasive prenatal paternity testing using a standard forensic genetic massively parallel sequencing assay for amplification of human identification SNPs[J]. Int J Legal Med, 2019, 133(5): 1361-1368. doi: 10.1007/s00414-019-02106-0

    [3]

    Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076): 485-487. doi: 10.1016/S0140-6736(97)02174-0

    [4]

    Chang MY, Kim AR, Kim MY, et al. Development of novel noninvasive prenatal testing protocol for whole autosomal recessive disease using picodroplet digital PCR[J]. Sci Rep, 2016, 6: 37153. doi: 10.1038/srep37153

    [5]

    Hyland CA, Millard GM, O'Brien H, et al. Non-invasive fetal RHD genotyping for RhD negative women stratified into RHD gene deletion or variant groups: comparative accuracy using two blood collection tube types[J]. Pathology, 2017, 49(7): 757-764. doi: 10.1016/j.pathol.2017.08.010

    [6]

    Palomaki GE, Best RG. Sequencing Cell-Free DNA in the Maternal Circulation to Screen for Down Syndrome, Other Common Trisomies, and Selected Genetic Disorders[M]. Genomic Applications in Pathology: Springer, 2019: 561-582.

    [7]

    Primacio R, Milot H, Jacob C. Early fetal sex determination using cell-free DNA in micro-volume of maternal plasma[J]. Journal of Pregnancy and Child Health, 2017, 4(6): 1-4.

    [8]

    Ryan A, Baner J, Demko Z, et al. Informatics-based, highly accurate, noninvasive prenatal paternity testing[J]. Genet Med, 2013, 15(6): 473-477. doi: 10.1038/gim.2012.155

    [9]

    Chan KC, Zhang J, Hui AB, et al. Size distributions of maternal and fetal DNA in maternal plasma[J]. Clin Chem, 2004, 50(1): 88-92. doi: 10.1373/clinchem.2003.024893

    [10]

    Breveglieri G, D'Aversa E, Finotti A, et al. Non-invasive Prenatal Testing Using Fetal DNA[J]. Mol Diagn Ther, 2019, 23(2): 291-299. doi: 10.1007/s40291-019-00385-2

    [11]

    Lo YM, Zhang J, Leung TN, et al. Rapid clearance of fetal DNA from maternal plasma[J]. Am J Hum Genet, 1999, 64(1): 218-224. doi: 10.1086/302205

    [12]

    Kayser M. Forensic use of Y-chromosome DNA: a general overview[J]. Hum Genet, 2017, 136(5): 621-635. doi: 10.1007/s00439-017-1776-9

    [13]

    Roewer L. Y-chromosome short tandem repeats in forensics—Sexing, profiling, and matching male DNA[J]. Wiley Interdisciplinary Reviews: Forensic Science, 2019, 1(4): e1336.

    [14]

    Roewer L, Andersen MM, Ballantyne J, et al. DNA commission of the International Society of Forensic Genetics(ISFG): Recommendations on the interpretation of Y-STR results in forensic analysis[J]. Forensic Sci Int Genet, 2020, 48: 102308. doi: 10.1016/j.fsigen.2020.102308

    [15]

    Tam J, Chan YM, Tsang SY, et al. Noninvasive prenatal paternity testing by means of SNP-based targeted sequencing[J]. Prenat Diagn, 2020, 40(4): 497-506.

    [16]

    Barra GB, Santa Rita TH, Chianca CF, et al. Fetal male lineage determination by analysis of Y-chromosome STR haplotype in maternal plasma[J]. Forensic Sci Int Genet, 2015, 15: 105-110. doi: 10.1016/j.fsigen.2014.11.006

    [17]

    Bai X, Li S, Cong B, et al. Construction of two fluorescence-labeled non-combined DNA index system miniSTR multiplex systems to analyze degraded DNA samples in the Chinese Han Population[J]. Electrophoresis, 2010, 31(17): 2944-2948. doi: 10.1002/elps.201000163

    [18]

    Biesecker LG, Bailey-Wilson JE, Ballantyne J, et al. Epidemiology. DNA identifications after the 9/11 World Trade Center attack[J]. Science, 2005, 310(5751): 1122-1123. doi: 10.1126/science.1116608

    [19]

    Rolf B, Keil W, Brinkmann B, et al. Paternity testing using Y-STR haplotypes: assigning a probability for paternity in cases of mutations[J]. Int J Legal Med, 2001, 115(1): 12-15. doi: 10.1007/s004140000201

    [20]

    Peterson RW. A few things you should know about paternity tests(but were afraid to ask)[J]. Santa Clara L Rev, 1982, 22: 667.

    [21]

    Guo F. Population genetics for 17 Y-STR loci in Northern Han Chinese from Liaoning Province, Northeast China[J]. Forensic Sci Int Genet, 2017, 29: e35-e37. doi: 10.1016/j.fsigen.2017.04.012

    [22]

    Thompson R, Zoppis S, McCord B. An overview of DNA typing methods for human identification: past, present, and future[J]. MethodsMol Biol, 2012, 830: 3-16.

    [23]

    Butler JM, Buel E, Crivellente F, et al. Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis[J]. Electrophoresis, 2004, 25(10-11): 1397-412.

    [24]

    Børsting C, Morling N. Next generation sequencing and its applications in forensic genetics[J]. Forensic Sci Int Genet, 2015, 18: 78-89. doi: 10.1016/j.fsigen.2015.02.002

    [25]

    Aly SM, Sabri DM. Next generation sequencing(NGS): a golden tool in forensic toolkit[J]. Arch Med Sadowej Kryminol, 2015, 65(4): 260-271.

    [26]

    Lo YM, Chiu RW. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis[J]. Clin Chem, 2008, 54(3): 461-466. doi: 10.1373/clinchem.2007.100016

    [27]

    Zhang S, Han S, Zhang M, et al. Non-invasive prenatal paternity testing using cell-free fetal DNA from maternal plasma: DNA isolation and genetic marker studies[J]. Leg Med(Tokyo), 2018, 32: 98-103. doi: 10.1016/j.legalmed.2018.03.009

    [28]

    Jiang H, Xie Y, Li X, et al. Noninvasive Prenatal Paternity Testing(NIPAT)through Maternal Plasma DNA Sequencing: A Pilot Study[J]. PLoS One, 2016, 11(9): e0159385. doi: 10.1371/journal.pone.0159385

    [29]

    Morling N, Allen RW, Carracedo A, et al. Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases[J]. Forensic Sci Int, 2002, 129(3): 148-157. doi: 10.1016/S0379-0738(02)00289-X

    [30]

    Zhou Z, Shao C, Xie J, et al. Genetic polymorphism and phylogenetic analyses of 21 non-CODIS STR loci in a Chinese Han population from Shanghai[J]. Mol Geneti Genomic Med, 2020, 8(2): e1083. http://onlinelibrary.wiley.com/doi/full/10.1002/mgg3.1083

    [31]

    Gjertson DW, Brenner CH, Baur MP, et al. ISFG: Recommendations on biostatistics in paternity testing[J]. Forensic Sci Int Genet, 2007, 1(3-4): 223-231. doi: 10.1016/j.fsigen.2007.06.006

    [32]

    Morling N, Allen RW, Carracedo A, et al. Paternity Testing Commission of the International Society of Forensic Genetics: recommendations on genetic investigations in paternity cases[J]. Forensic Sci Int, 2002, 129(3): 148-157. doi: 10.1016/S0379-0738(02)00289-X

    [33]

    Ellegren H. Microsatellites: simple sequences with complex evolution[J]. Nat Rev Genet, 2004, 5(6): 435-445. doi: 10.1038/nrg1348

    [34]

    de Jong A, Dondorp WJ, de Die-Smulders CE, et al. Non-invasive prenatal testing: ethical issues explored[J]. Eur J Hum Genet, 2010, 18(3): 272-277. doi: 10.1038/ejhg.2009.203

  • 加载中

(4)

(1)

计量
  • 文章访问数:  1111
  • PDF下载数:  531
  • 施引文献:  0
出版历程
收稿日期:  2021-04-30
刊出日期:  2022-02-01

目录