餐后血脂评估心血管疾病风险的前瞻性研究

谭洪辉, 张灿, 龙则平. 餐后血脂评估心血管疾病风险的前瞻性研究[J]. 临床血液学杂志, 2022, 35(2): 130-133. doi: 10.13201/j.issn.1004-2806.2022.02.011
引用本文: 谭洪辉, 张灿, 龙则平. 餐后血脂评估心血管疾病风险的前瞻性研究[J]. 临床血液学杂志, 2022, 35(2): 130-133. doi: 10.13201/j.issn.1004-2806.2022.02.011
TAN Honghui, ZHANG Can, LONG Zeping. Process by prospective study of cardiovascular disease risk assessment based on postprandial lipid[J]. J Clin Hematol, 2022, 35(2): 130-133. doi: 10.13201/j.issn.1004-2806.2022.02.011
Citation: TAN Honghui, ZHANG Can, LONG Zeping. Process by prospective study of cardiovascular disease risk assessment based on postprandial lipid[J]. J Clin Hematol, 2022, 35(2): 130-133. doi: 10.13201/j.issn.1004-2806.2022.02.011

餐后血脂评估心血管疾病风险的前瞻性研究

  • 基金项目:
    茂名市科技计划项目(No: 2020422)
详细信息
    通讯作者: 谭洪辉,E-mail:thh3136@163.com
  • 中图分类号: R457.1

Process by prospective study of cardiovascular disease risk assessment based on postprandial lipid

More Information
  • 目的 通过餐后血脂评估心血管疾病风险前瞻性研究,探讨检验采血流程的优化。方法 选择320例冠心病患者检测空腹及餐后的血清三酰甘油(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、血清脂蛋白a[LP(a)]、载脂蛋白A1(ApoA1)及载脂蛋白B(ApoB)血脂参数,分析个体间血脂用餐前后变化差异及空腹与餐后血脂水平的相关性,比较空腹血脂及餐后血脂浓度与Syntax评分的相关性,比较空腹和餐后血脂与心血管事件危险比的关系及差异,评估餐后采血检验的应用效果。结果 餐后血脂与空腹血脂7项指标中TC、HDL-C、LP(a)和ApoB比较,差异无统计学意义(均P>0.05),TG、LDL-C和ApoA1比较差异有统计学意义(P< 0.05),但7项指标均显著呈正相关性(r0.693~0.878,P< 0.001);血脂水平与Syntax评分Spearman相关性分析中,餐后比空腹多出HDL-C和ApoA1 2个相关指标;血脂水平与心血管事件Cox比例风险回归危险比分析中,空腹血脂和餐后血脂危险比差异无统计学意义(P>0.05)。结论 餐后血脂更适合评估心血管疾病风险,心血管疾病筛查可以推广餐后采血检验流程。
  • 加载中
  • 表 1  相同个体血脂检测结果差异比较及相关性分析 X±S

    血脂指标 例数 空腹 餐后 t P r(95%CI) P
    TG/(mmol·L-1) 320 1.86±1.33 2.28±1.78 3.381 0.001 0.693(0.717~0.737) < 0.001
    TC/(mmol·L-1) 320 4.79±1.26 4.80±1.24 0.101 0.919 0.747(0.694~0.792) < 0.001
    LDL-C/(mmol·L-1) 320 2.81±0.87 2.68±0.71 2.071 0.039 0.727(0.671~0.775) < 0.001
    HDL-C/(mmol·L-1) 320 1.26±0.37 1.22±0.24 1.622 0.105 0.878(0.850~0.901) < 0.001
    LP(a)/(mg·L-1) 320 389.17±97.21 403.69±111.68 1.754 0.080 0.872(0.843~0.896) < 0.001
    ApoA1/(g·L-1) 320 1.38±0.55 1.27±0.48 2.696 0.007 0.737(0.683~0.783) < 0.001
    ApoB/(g·L-1) 320 1.17±0.46 1.11±0.35 1.857 0.064 0.715(0.657~0.765) < 0.001
    下载: 导出CSV

    表 2  血脂水平与Syntax评分的相关性

    血脂指标 空腹 餐后
    r(95%CI) P r(95%CI) P
    TG 0.098(-0.012,0.205) 0.080 0.078(-0.032,0.186) 0.164
    TC 0.225(0.118,0.327) < 0.001 0.253(0.147,0.353) < 0.001
    LDL-C 0.307(0.204,0.403) < 0.001 0.284(0.180,0.382) < 0.001
    HDL-C -0.105(-0.212,0.005) 0.061 -0.228(-0.32,-0.121) < 0.001
    LP(a) 0.330(0.229,0.424) < 0.001 0.335(0.234,0.429) < 0.001
    ApoA1 -0.103(-0.210,0.007) 0.066 -0.214(-0.316,-0.107) < 0.001
    ApoB 0.091(-0.019,0.199) 0.104 0.095(-0.015,0.202) 0.090
    下载: 导出CSV

    表 3  空腹和餐后血脂与心血管事件HR分析

    血脂指标 Unadjusted HR(95%CI) Wald χ2 P Adjusted HR(95%CI) Wald χ2 P
    空腹TG 1.015(0.785~1.327) 1.025(0.788~1.342)
    餐后TG 1.035(0.798~1.341) 0.001 0.980 1.055(0.798~1.348) 0.001 0.970
    空腹TC 1.086(0.911~1.282) 1.158(0.963~1.352)
    餐后TC 1.184(0.964~1.445) 0.014 0.907 1.257(1.032~1.543) 0.014 0.907
    空腹LDL-C 1.242(1.033~1.492) 1.305(1.072~1.554)
    餐后LDL-C 1.265(0.031~1.542) 0.001 0.980 1.348(1.080~1.611) 0.001 0.980
    空腹HDL-C 0.576(0.342~0.953) 0.592(0.343~1.012)
    餐后HDL-C 0.665(0.401~1.092) 0.021 0.886 0.693(0.408~1.187) 0.021 0.886
    空腹LP(a) 1.256(1.032~1.523) 1.338(1.080~1.584)
    餐后LP(a) 1.325(1.051~1.652) 0.006 0.938 1.396(1.113~1.734) 0.006 0.938
    空腹ApoA1 0.567(0.348~0.947) 0.525(0.118~0.327)
    餐后ApoA1 0.656(0.398~1.089) 0.021 0.886 0.623(0.118~0.327) 0.003 0.958
    空腹ApoB 1.141(1.001~1.400) 1.235(1.045~1.462)
    餐后ApoB 1.262(1.043~1.536) 0.020 0.888 1.335(1.091~1.615) 0.013 0.911
    所示数值为Cox模型风险比(95%CI),Adjusted HR根据年龄、性别、体重指数、吸烟状况、糖尿病、高血压和服用他汀类药物治疗进行调整。
    下载: 导出CSV
  • [1]

    冯国飞, 纪禹同, 袁慧, 等. 成人心血管发病风险评估及其血脂达标情况分析[J]. 实用医学杂志, 2020, 36(4): 502-506. doi: 10.3969/j.issn.1006-5725.2020.04.017

    [2]

    Higgins V, Adeli K. Postprandial Dyslipidemia: Pathophysiology and Cardiovascular Disease Risk Assessment[J]. EJIFCC, 2017, 28(3): 168-184.

    [3]

    Darras P, Mattman A, Francis GA. Nonfasting lipid testing: the new standard for cardiovascular risk assessment[J]. CMAJ, 2018, 190(45): E1317-E1318. doi: 10.1503/cmaj.180804

    [4]

    Nakajima K, Tanaka A. Postprandial remnant lipoproteins as targets for the prevention of atherosclerosis[J]. Curr Opin Endocrinol Diabetes Obes, 2018, 25(2): 108-117. doi: 10.1097/MED.0000000000000393

    [5]

    Nakamura K, Miyoshi T, Yunoki K, et al. Postprandial hyperlipidemia as a potential residual risk factor[J]. J Cardiol, 2016, 67(4): 335-9. doi: 10.1016/j.jjcc.2015.12.001

    [6]

    Nordestgaard BG, Langsted A, Mora S, et al. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the European Atherosclerosis Society and European Federation of Clinical Chemistry and Laboratory Medicine[J]. Eur Heart J, 2016, 37(25): 1944-58. doi: 10.1093/eurheartj/ehw152

    [7]

    朱华芳, 顾俊, 殷兆芳, 等. 餐后血脂水平及其波动性与冠状动脉病变程度的相关性研究[J]. 心血管康复医学杂志, 2019, 28(1): 1-5. doi: 10.3969/j.issn.1008-0074.2019.01.01

    [8]

    Kolovou GD, Watts GF, Mikhailidis DP, et al. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-fasting Lipid Profiles: Executive Summary of a 2019 Expert Panel Statement[J]. Curr Vasc Pharmacol, 2019, 17(5): 538-540. doi: 10.2174/1570161117999190517115432

    [9]

    Doran B, Guo Y, Xu J, et al. Prognostic value of fasting versus nonfasting low-density lipoprotein cholesterol levels on long-term mortality: insight from the National Health and Nutrition Examination Survey Ⅲ(NHANES-Ⅲ)[J]. Circulation, 2014, 130(7): 546-553. doi: 10.1161/CIRCULATIONAHA.114.010001

    [10]

    Ference BA, Graham I, Tokgozoglu L, et al. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series[J]. J Am Coll Cardiol, 2018, 72(10): 1141-1156. http://www.onacademic.com/detail/journal_1000040422781510_04ab.html

    [11]

    Langsted A, Nordestgaard BG. Nonfasting versus fasting lipid profile for cardiovascular risk prediction[J]. Pathology, 2019, 51(2): 131-141. doi: 10.1016/j.pathol.2018.09.062

    [12]

    Langlois MR, Chapman MJ, Cobbaert C, et al. Quantifying Atherogenic Lipoproteins: Current and Future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM[J]. Clin Chem, 2018, 64(7): 1006-1033.

    [13]

    Anderson TJ, Grégoire J, Pearson GJ, et al. 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidemia for the Prevention of Cardiovascular Disease in the Adult[J]. Can J Cardiol, 2016, 32(11): 1263-1282.

    [14]

    王霞, 潘彤, 杨文玲. 3种不同除脂方法在消除脂血对丙氨酸转氨酶检测干扰的比较研究[J]. 国际检验医学杂志, 2018, 39(9): 1126-1128. doi: 10.3969/j.issn.1673-4130.2018.09.030

    [15]

    Mora S, Chang CL, Moorthy MV, et al. Association of Nonfasting vs Fasting Lipid Levels With Risk of Major Coronary Events in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm[J]. JAMA Intern Med, 2019, 179(7): 898-905.

    [16]

    耿蓬勃, 徐晓辉, 张丹凤, 等. 冠状动脉病变程度与胆红素血脂指数及纤维蛋白原水平的关系[J]. 临床血液学杂志, 2020, 33(4): 237-240, 244. http://lcxz.cbpt.cnki.net/WKC/WebPublication/paperDigest.aspx?paperID=dc27ee5c-3e39-448a-b315-4524dd950023

    [17]

    Rifai N, Young IS, Nordestgaard BG, et al. Nonfasting Sample for the Determination of Routine Lipid Profile: Is It an Idea Whose Time Has Come?[J]. Clin Chem, 2016, 62(3): 428-35.

  • 加载中
计量
  • 文章访问数:  785
  • PDF下载数:  274
  • 施引文献:  0
出版历程
收稿日期:  2021-05-28
修回日期:  2021-06-20
刊出日期:  2022-02-01

目录