肾性贫血的发病机制及研究进展

牟姗, 伍佳佳. 肾性贫血的发病机制及研究进展[J]. 临床血液学杂志, 2022, 35(11): 767-770. doi: 10.13201/j.issn.1004-2806.2022.11.003
引用本文: 牟姗, 伍佳佳. 肾性贫血的发病机制及研究进展[J]. 临床血液学杂志, 2022, 35(11): 767-770. doi: 10.13201/j.issn.1004-2806.2022.11.003
Pathogenesis and research progress of renal anemia[J]. J Clin Hematol, 2022, 35(11): 767-770. doi: 10.13201/j.issn.1004-2806.2022.11.003
Citation: Pathogenesis and research progress of renal anemia[J]. J Clin Hematol, 2022, 35(11): 767-770. doi: 10.13201/j.issn.1004-2806.2022.11.003

肾性贫血的发病机制及研究进展

详细信息
    作者简介:

    牟姗,博士生导师,教授,主任医师,中国中西医结合学会肾病青年委员会副主任委员,上海市医学会肾病分会副主任委员,上海中西医结合学会肾病专业委员会副主任委员。目前独立主持的在研科研项目20余项,包括国家重点研发项目,国家自然科学基金项目面上项目,上海市科委项目等。近年来的研究成果获得“中国中西医结合学会科学技术奖”一等奖、“上海中西医结合科学技术奖”二等奖,入选上海市领军人才,上海市优秀学术带头人

    通讯作者: 牟姗,E-mail:shan_mou@126.com
  • 中图分类号: R556

Pathogenesis and research progress of renal anemia

More Information
  • 加载中
  • 图 1  肾性贫血机制示意图

  • [1]

    Jacobson LO, Goldwasser E, Fried W, et al. Role of the kidney in erythropoiesis[J]. Nature, 1957, 179(4560): 633-634. doi: 10.1038/179633a0

    [2]

    Wickramasinghe SN. Erythropoietin and the human kidney: evidence for an evolutionary link from studies of Salmo gairdneri[J]. Comp Biochem Physiol Comp Physiol, 1993, 104(1): 63-65.

    [3]

    Nangaku M, Eckardt KU. Pathogenesis of renal anemia[J]. Semin Nephrol, 2006, 26(4): 261-268. doi: 10.1016/j.semnephrol.2006.06.001

    [4]

    Bernhardt WM, Wiesener MS, Scigalla P, et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD[J]. J Am Soc Nephrol, 2010, 21(12): 2151-2156. doi: 10.1681/ASN.2010010116

    [5]

    Duffield JS. Cellular and molecular mechanisms in kidney fibrosis[J]. J Clin Invest, 2014, 124(6): 2299-2306. doi: 10.1172/JCI72267

    [6]

    Shih HM, Wu CJ, Lin SL. Physiology and pathophysiology of renal erythropoietin-producing cells[J]. J Formos Med Assoc, 2018, 117(11): 955-963. doi: 10.1016/j.jfma.2018.03.017

    [7]

    Eckardt KU, Kurtz A, Bauer C. Regulation of erythropoietin production is related to proximal tubular function[J]. Am J Physiol, 1989, 256(5 Pt 2): F942-F947. https://epub.uni-regensburg.de/26980/

    [8]

    Ogawa C, Tsuchiya K, Maeda K, et al. Renal Anemia and Iron Metabolism[J]. Contrib Nephrol, 2018, 195: 62-73.

    [9]

    Noonan ML, Ni P, Agoro R, et al. The HIF-PHI BAY 85-3934(Molidustat)Improves Anemia and Is Associated With Reduced Levels of Circulating FGF23 in a CKD Mouse Model[J]. J Bone Miner Res, 2021, 36(6): 1117-1130. doi: 10.1002/jbmr.4272

    [10]

    Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2(USF2) knockout mice[J]. Proc Natl Acad Sci U S A, 2001, 98(15): 8780-8785. doi: 10.1073/pnas.151179498

    [11]

    Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem, 2001, 276(11): 7806-7810. doi: 10.1074/jbc.M008922200

    [12]

    Kalantar-Zadeh K, Kalantar-Zadeh K, Lee GH. The fascinating but deceptive ferritin: to measure it or not to measure it in chronic kidney disease?[J]. Clin J Am Soc Nephrol, 2006, 1(Suppl 1): S9-S18. https://cjasn.asnjournals.org/content/1/Supplement_1/S9

    [13]

    Babitt JL, Lin HY. Mechanisms of anemia in CKD[J]. J Am Soc Nephrol, 2012, 23(10): 1631-1634. doi: 10.1681/ASN.2011111078

    [14]

    Faivre A, Scholz CC, de Seigneux S. Hypoxia in chronic kidney disease: towards a paradigm shift?[J]. Nephrol Dial Transplant, 2021, 36(10): 1782-1790. doi: 10.1093/ndt/gfaa091

    [15]

    Gruber M, Hu CJ, Johnson RS, et al. Acute postnatal ablation of Hif-2alpha results in anemia[J]. Proc Natl Acad Sci U S A, 2007, 104(7): 2301-2306. doi: 10.1073/pnas.0608382104

    [16]

    Günter J, Ruiz-Serrano A, Pickel C, et al. The functional interplay between the HIF pathway and the ubiquitin system-more than a one-way road[J]. Exp Cell Res, 2017, 356(2): 152-159. doi: 10.1016/j.yexcr.2017.03.027

    [17]

    Hasegawa S, Tanaka T, Nangaku M. Hypoxia-inducible factor stabilizers for treating anemia of chronic kidney disease[J]. Curr Opin Nephrol Hypertens, 2018, 27(5): 331-338. doi: 10.1097/MNH.0000000000000431

    [18]

    Hanudel MR, Wong S, Jung G, et al. Amelioration of chronic kidney disease-associated anemia by vadadustat in mice is not dependent on erythroferrone[J]. Kidney Int, 2021, 100(1): 79-89. doi: 10.1016/j.kint.2021.03.019

    [19]

    Mastrogiannaki M, Matak P, Keith B, et al. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice[J]. J Clin Invest, 2009, 119(5): 1159-1166. doi: 10.1172/JCI38499

    [20]

    Ikeda Y. Novel roles of HIF-PHIs in chronic kidney disease: the link between iron metabolism, kidney function, and FGF23[J]. Kidney Int, 2021, 100(1): 14-16. doi: 10.1016/j.kint.2021.04.030

    [21]

    Tanaka M, Komaba H, Fukagawa M. Emerging Association Between Parathyroid Hormone and Anemia in Hemodialysis Patients[J]. Ther Apher Dial, 2018, 22(3): 242-245. doi: 10.1111/1744-9987.12685

    [22]

    Trunzo JA, McHenry CR, Schulak JA, et al. Effect of parathyroidectomy on anemia and erythropoietin dosing in end-stage renal disease patients with hyperparathyroidism[J]. Surgery, 2008, 144(6): 915-918;discussion 919. https://www.sciencedirect.com/science/article/pii/S0039606008005564

    [23]

    Battistella M, Richardson RM, Bargman JM, et al. Improved parathyroid hormone control by cinacalcet is associated with reduction in darbepoetin requirement in patients with end-stage renal disease[J]. Clin Nephrol, 2011, 76(2): 99-103.

    [24]

    Boronat M, Santana Á, Bosch E, et al. Relationship between Anemia and Serum Concentrations of Calcium and Phosphorus in Advanced Non-Dialysis-Dependent Chronic Kidney Disease[J]. Nephron, 2017, 135(2): 97-104.

    [25]

    Icardi A, Paoletti E, De Nicola L, et al. Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: the potential role of inflammation[J]. Nephrol Dial Transplant, 2013, 28(7): 1672-1679. https://academic.oup.com/ndt/article/28/7/1672/1858059

    [26]

    Edmonston D, Wolf M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis[J]. Nat Rev Nephrol, 2020, 16(1): 7-19. https://pubmed.ncbi.nlm.nih.gov/31519999/

    [27]

    Holecki M, Chudek J, Owczarek A, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly[J]. Clin Endocrinol(Oxf), 2015, 82(6): 900-909. https://onlinelibrary.wiley.com/doi/10.1111/cen.12759

    [28]

    Eisenga MF, van Londen M, Leaf DE, et al. C-Terminal Fibroblast Growth Factor 23, Iron Deficiency, and Mortality in Renal Transplant Recipients[J]. J Am Soc Nephrol, 2017, 28(12): 3639-3646. https://www.narcis.nl/publication/RecordID/oai%3Apure.rug.nl%3Apublications%2Fdb097f0c-b3e7-42d2-b27f-6bfac1f4a6d3

    [29]

    Lewerin C, Ljunggren Ö, Nilsson-Ehle H, et al. Low serum iron is associated with high serum intact FGF23 in elderly men: The Swedish MrOS study[J]. Bone, 2017, 98: 1-8. https://www.sciencedirect.com/science/article/pii/S8756328217300509

  • 加载中

(1)

计量
  • 文章访问数:  1520
  • PDF下载数:  1165
  • 施引文献:  0
出版历程
收稿日期:  2022-09-08
刊出日期:  2022-11-01

目录