乳酸脱氢酶A乙酰化修饰促进多发性骨髓瘤对硼替佐米耐药的初步机制探索

黄蓓晖, 李娟, 谷景立, 等. 乳酸脱氢酶A乙酰化修饰促进多发性骨髓瘤对硼替佐米耐药的初步机制探索[J]. 临床血液学杂志, 2024, 37(1): 34-40. doi: 10.13201/j.issn.1004-2806.2024.01.008
引用本文: 黄蓓晖, 李娟, 谷景立, 等. 乳酸脱氢酶A乙酰化修饰促进多发性骨髓瘤对硼替佐米耐药的初步机制探索[J]. 临床血液学杂志, 2024, 37(1): 34-40. doi: 10.13201/j.issn.1004-2806.2024.01.008
HUANG Beihui, LI Juan, GU Jingli, et al. Potential mechanism of lactate dehydrogenase A acetylation regulation to promote bortezomib resistance in multiple myeloma[J]. J Clin Hematol, 2024, 37(1): 34-40. doi: 10.13201/j.issn.1004-2806.2024.01.008
Citation: HUANG Beihui, LI Juan, GU Jingli, et al. Potential mechanism of lactate dehydrogenase A acetylation regulation to promote bortezomib resistance in multiple myeloma[J]. J Clin Hematol, 2024, 37(1): 34-40. doi: 10.13201/j.issn.1004-2806.2024.01.008

乳酸脱氢酶A乙酰化修饰促进多发性骨髓瘤对硼替佐米耐药的初步机制探索

  • 基金项目:
    广东省基础与应用基础研究基金项目(No:2021A1515011715);国家自然科学基金面上项目(No:82070220);中山大学附属第一医院临床专科能力建设支持计划
详细信息

Potential mechanism of lactate dehydrogenase A acetylation regulation to promote bortezomib resistance in multiple myeloma

More Information
  • 目的 探讨乳酸脱氢酶A(lactate dehydrogenase A,LDHA)乙酰化调节促进多发性骨髓瘤(multiple myeloma,MM)对硼替佐米(bortezomib,BTZ)耐药的可能机制。方法 在骨髓瘤患者中检测LDHA表达与BTZ敏感性的关系。构建对BTZ耐药的骨髓瘤细胞株,检测耐药株与敏感株LDHA的表达情况。用CCK8检测BTZ处理后骨髓瘤耐药和敏感株的细胞增殖,用流式细胞仪检测BTZ处理后耐药和敏感株的凋亡率。在iHypoxia数据库中对LDHA可能的翻译后修饰位点进行预测,并对常见的翻译后修饰进行检测。为了探索LDHA上游调控机制,使用不同的抑制剂处理骨髓瘤细胞后检测LDHA的表达情况。结果 MM患者肿瘤组织的LDHA表达明显高于对照组,且对BTZ耐药患者LDHA的蛋白和mRNA表达明显高于对BTZ敏感的患者。成功构建BTZ诱导耐药的MM1.s-BR和NCI-H929-BR耐药细胞株。CCK8检测细胞活性证明BTZ耐药细胞株在BTZ处理后存活率高于敏感细胞株,而流式细胞仪结果显示BTZ敏感细胞株在BTZ处理后凋亡率高于耐药细胞株,以上结果证实BTZ耐药细胞株的构建成功。Western blot结果显示LDHA在BTZ耐药细胞株中的表达高于野生型细胞株。通过数据库预测,LDHA常见的翻译后修饰位点为磷酸化、乙酰化和泛素化。BTZ耐药细胞株中乙酰化水平较敏感株明显下降,而其他翻译后修饰程度耐药株和敏感株无明显差异。组蛋白脱乙酰酶类Ⅰ和Ⅱ的共同抑制剂trichostatin处理BTZ耐药细胞株后LDHA蛋白含量下降,乙酰化水平上调,且可以克服耐药株MM1.s-BR对BTZ的耐药,但不能克服高表达LDHA的MM1.s LDH high对BTZ的耐药。结论 组蛋白脱乙酰酶类Ⅰ/Ⅱ可能通过促进LDHA的去乙酰化提高LDHA水平,促进MM对BTZ耐药。
  • 加载中
  • 图 1  对BTZ耐药的患者LDHA升高

    图 2  对BTZ耐药的MM细胞LDHA表达上调

    图 3  乙酰化修饰可能是LDHA调控MM细胞对BTZ耐药的重要机制

    图 4  HDACⅠ/Ⅱ为调控LDHA乙酰化水平的上游机制

  • [1]

    van de Donk N, Pawlyn C, Yong KL. Multiple myeloma[J]. Lancet, 2021, 397(10272): 410-427. doi: 10.1016/S0140-6736(21)00135-5

    [2]

    Granja S, Pinheiro C, Reis RM, et al. Glucose Addiction in Cancer Therapy: Advances and Drawbacks[J]. Curr Drug Metab, 2015, 16(3): 221-242. doi: 10.2174/1389200216666150602145145

    [3]

    El AC, De Veirman K, Maes K, et al. Metabolic Features of Multiple Myeloma[J]. Int J Mol Sci, 2018, 19(4): 1200. doi: 10.3390/ijms19041200

    [4]

    Weir P, Donaldson D, Mcmullin MF, et al. Metabolic Alterations in Multiple Myeloma: From Oncogenesis to Proteasome Inhibitor Resistance[J]. Cancers(Basel), 2023, 15(6): 1682.

    [5]

    Augoff K, Hryniewicz-Jankowska A, Tabola R. Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer[J]. Cancer Lett, 2015, 358(1): 1-7. doi: 10.1016/j.canlet.2014.12.035

    [6]

    Huang B, Lu J, Wang X, et al. Prognostic value of lactate dehydrogenase in Chinese patients with newly diagnosed transplant eligible multiple myeloma[J]. Leuk Lymphoma, 2017, 58(7): 1740-1742. doi: 10.1080/10428194.2016.1252975

    [7]

    Lin Y, Wang Y, Li PF. Mutual regulation of lactate dehydrogenase and redox robustness[J]. Front Physiol, 2022, 13: 1038421. doi: 10.3389/fphys.2022.1038421

    [8]

    Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma[J]. Lancet Oncol, 2014, 15(12): e538-e548. doi: 10.1016/S1470-2045(14)70442-5

    [9]

    Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics[J]. Semin Cancer Biol, 2022, 87: 184-195. doi: 10.1016/j.semcancer.2022.11.007

    [10]

    Feng Y, Xiong Y, Qiao T, et al. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy[J]. Cancer Med, 2018, 7(12): 6124-6136. doi: 10.1002/cam4.1820

    [11]

    Valvona CJ, Fillmore HL, Nunn PB, et al. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor[J]. Brain Pathol, 2016, 26(1): 3-17. doi: 10.1111/bpa.12299

    [12]

    Cai H, Li J, Zhang Y, et al. LDHA Promotes Oral Squamous Cell Carcinoma Progression Through Facilitating Glycolysis and Epithelial-Mesenchymal Transition[J]. Front Oncol, 2019, 9: 1446. doi: 10.3389/fonc.2019.01446

    [13]

    Lv J, Zhou Z, Wang J, et al. Prognostic Value of Lactate Dehydrogenase Expression in Different Cancers: A Meta-Analysis[J]. Am J Med Sci, 2019, 358(6): 412-421. doi: 10.1016/j.amjms.2019.09.012

    [14]

    Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions[J]. Science, 2009, 325(5942): 834-840. doi: 10.1126/science.1175371

    [15]

    He TL, Zhang YJ, Jiang H, et al. The c-Myc-LDHA axis positively regulates aerobic glycolysis and promotes tumor progression in pancreatic cancer[J]. Med Oncol, 2015, 32(7): 187. doi: 10.1007/s12032-015-0633-8

    [16]

    Maiso P, Huynh D, Moschetta M, et al. Metabolic signature identifies novel targets for drug resistance in multiple myeloma[J]. Cancer Res, 2015, 75(10): 2071-2082. doi: 10.1158/0008-5472.CAN-14-3400

    [17]

    Jin L, Chun J, Pan C, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis[J]. Oncogene, 2017, 36(27): 3797-3806. doi: 10.1038/onc.2017.6

    [18]

    Fan J, Hitosugi T, Chung TW, et al. Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells[J]. Mol Cell Biol, 2011, 31(24): 4938-4950. doi: 10.1128/MCB.06120-11

    [19]

    Zhao D, Zou SW, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer[J]. Cancer Cell, 2013, 23(4): 464-476. doi: 10.1016/j.ccr.2013.02.005

  • 加载中

(4)

计量
  • 文章访问数:  464
  • PDF下载数:  123
  • 施引文献:  0
出版历程
收稿日期:  2023-10-30
刊出日期:  2024-01-01

目录