地西他滨联合阿霉素对TP53突变弥漫大B淋巴瘤细胞株的影响及临床意义研究

郑艳丽, 贺建霞, 白斯君, 等. 地西他滨联合阿霉素对TP53突变弥漫大B淋巴瘤细胞株的影响及临床意义研究[J]. 临床血液学杂志, 2024, 37(1): 56-61. doi: 10.13201/j.issn.1004-2806.2024.01.012
引用本文: 郑艳丽, 贺建霞, 白斯君, 等. 地西他滨联合阿霉素对TP53突变弥漫大B淋巴瘤细胞株的影响及临床意义研究[J]. 临床血液学杂志, 2024, 37(1): 56-61. doi: 10.13201/j.issn.1004-2806.2024.01.012
ZHENG Yanli, HE Jianxia, BAI Sijun, et al. Effect of decitabine combined with adriamycin on TP53 mutated diffuse large B lymphoma cell line and its clinical significance[J]. J Clin Hematol, 2024, 37(1): 56-61. doi: 10.13201/j.issn.1004-2806.2024.01.012
Citation: ZHENG Yanli, HE Jianxia, BAI Sijun, et al. Effect of decitabine combined with adriamycin on TP53 mutated diffuse large B lymphoma cell line and its clinical significance[J]. J Clin Hematol, 2024, 37(1): 56-61. doi: 10.13201/j.issn.1004-2806.2024.01.012

地西他滨联合阿霉素对TP53突变弥漫大B淋巴瘤细胞株的影响及临床意义研究

  • 基金项目:
    山西省自然科学基金(No:201901D111435)
详细信息

Effect of decitabine combined with adriamycin on TP53 mutated diffuse large B lymphoma cell line and its clinical significance

More Information
  • 目的 观察地西他滨对TP53突变弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)细胞株DB增殖、凋亡及周期的影响,并评估地西他滨联合治疗TP53突变DLBCL患者的疗效及安全性。方法 体外培养细胞,不同浓度(5~80 μmol/L)地西他滨和阿霉素作用于DB细胞后采用CCK-8法计算增殖抑制率;地西他滨(20 μmol/L)和阿霉素(12 μmol/L)作用于DB细胞24/48 h,采用Annexin V-FITC/PI及流式细胞术检测凋亡率及细胞周期;比较不同组间细胞增殖、凋亡及周期的差异。另收集5例地西他滨联合治疗TP53突变DLBCL患者的临床资料进行回顾性总结。结果 对DB细胞的增殖抑制作用随着地西他滨浓度的增加(5、10、20、40、80 μmol/L)而增强,联合阿霉素(12 μmol/L)后抑制率较单药明显增大[(78.51±1.19)% vs (40.80±1.62)%,(87.48±0.29)% vs (46.83±1.47)%,(92.59±0.15)% vs (47.07±1.50)%,(94.57±0.58)% vs (52.68±0.84)%,(95.56±0.53)% vs (54.95±1.07)%,P < 0.01];采用IC50浓度(20 μmol/L地西他滨、12 μmol/L阿霉素)药物处理细胞,抑制率随时间增加(12、24、48 h)而增大[(50.40±0.19)%、(61.65±0.16)%、(85.08±0.78)%,P < 0.01]。与空白对照组比较,地西他滨作用于DB细胞24 h显示S期细胞比例增加[(10.54±0.40)% vs (2.03±0.01)%,P < 0.01],48 h显示G2/M期细胞比例增加[(17.45±0.19)% vs (3.69±0.09)%,P < 0.01]。5例复发/难治TP53突变DLBCL患者使用含有地西他滨方案治疗后,总有效率为40%(2/5),主要不良反应为骨髓抑制,未出现治疗相关死亡。结论 地西他滨可增强阿霉素对TP53突变DLBCL细胞株的增殖抑制作用,阻滞细胞周期。含地西他滨方案治疗TP53突变DLBCL显示出一定疗效,安全性良好,值得进一步探索。
  • 加载中
  • 图 1  药物作用24 h对DB细胞周期的影响

    图 2  药物作用48 h对DB细胞周期的影响

    表 1  药物作用48 h对DB细胞的抑制作用 X±S

    添加药物 抑制率/%
    5 μmol/L 10 μmol/L 20 μmol/L 40 μmol/L 80 μmol/L
    ADM 40.78±1.25 47.77±1.06 62.68±0.47 74.43±1.91 79.71±1.82
    DAC 40.80±1.62 46.83±1.47 47.07±1.50 52.68±0.84 54.95±1.07
    ADM(12 μmol/L)+DAC 78.51±1.19 87.48±0.29 92.59±0.15 94.57±0.58 95.56±0.53
    P < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
    下载: 导出CSV

    表 2  药物作用不同时间对DB细胞的抑制作用 X±S

    添加药物 抑制率/%
    12 h 24 h 48 h P
    12 μmol/L ADM 37.66±0.50 45.04±0.19 56.85±0.57 < 0.001
    20 μmol/L DAC 32.85±0.21 40.50±0.16 45.49±1.84 < 0.001
    两药联合 50.40±0.19 61.65±0.16 85.08±0.78 < 0.001
    P < 0.001 < 0.001 < 0.001
    12 μmol/L ADM、20 μmol/L DAC和两药联合在不同时间对DB细胞抑制率的比较;在相同时间内12 μmol/L ADM、20 μmol/L DAC和两药联合对DB细胞抑制率的比较。
    下载: 导出CSV

    表 3  药物作用24 h对DB细胞周期的影响 %,X±S

    组别 G0/G1 S G2/M
    空白对照组 90.38±0.19 2.03±0.01 3.38±0.10
    12 μmol/L ADM 82.29±0.66 12.56±0.71 4.78±0.33
    20 μmol/L DAC 86.78±0.48 10.54±0.40 2.17±0.08
    两药联合 79.37±0.51 16.55±0.73 3.46±0.13
    P < 0.001 < 0.001 < 0.001
    下载: 导出CSV

    表 4  药物作用48 h对DB细胞周期的影响 %,X±S

    G0/G1 S G2/M
    空白对照组 90.35±0.17 3.89±0.16 3.69±0.09
    12 μmol/L ADM 75.94±0.51 4.01±0.06 19.39±0.27
    20 μmol/L DAC 78.90±0.42 4.46±0.18 17.45±0.19
    两药联合 75.00±0.35 1.85±0.09 24.91±0.40
    P < 0.001 < 0.001 < 0.001
    下载: 导出CSV

    表 5  患者临床资料

    病例 性别 年龄/岁 分型 IPI评分 ECOG评分 TP53突变类型 既往治疗线数 治疗方案 疗效 不良反应
    1 58 GCB 3 2 exon 4 2 DAC、PD-1 疾病进展 Ⅳ度骨髓抑制、肝损害
    2 37 non-GCB双表达 4 3 3 DAC、PD-1 疾病稳定 Ⅳ度骨髓抑制、严重腹泻
    3 55 GCB双表达 2 1 exon 7 2 DAC、PD-1、泽布替尼 2个疗程部分缓解,4个疗程疾病稳定 Ⅳ度骨髓抑制
    4 61 non-GCB双表达 2 2 exon 8 1 DAC、R-DICE 部分缓解
    5 63 non-GCB 4 2 exon 8 2 DAC、R-Gemox 部分缓解 Ⅳ度骨髓抑制
    下载: 导出CSV
  • [1]

    Liu W, Liu J, Song Y, et al. Burden of lymphoma in China, 1990-2019: an analysis of the global burden of diseases, injuries, and risk factors study 2019[J]. Aging(Albany NY), 2022, 14(7): 3175-3190.

    [2]

    Intlekofer AM, Joffe E, Batlevi CL, et al. Integrated DNA/RNA targeted genomic profiling of diffuse large B-cell lymphoma using a clinical assay[J]. Blood Cancer J, 2018, 8(6): 60. doi: 10.1038/s41408-018-0089-0

    [3]

    Shi YF, Gao ZF, Li XH, et al. Investigation for pathological interpretation criteria and its prognostic value for P53 expression in Chinese diffuse large B-cell lymphoma[J]. Chin J Hematol, 2022, 43(12): 1010-1015.

    [4]

    Ebid OAEH, Ezz El Arab LR, Saad AS, et al. Prognostic impact of MYD88 and TP53 mutations in diffuse large B Cell lymphoma[J]. Ann Hematol, 2023, 102(12): 3477-3488. doi: 10.1007/s00277-023-05420-1

    [5]

    Yi JH, Jeong SH, Kim SJ, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from two prospective Korean cohorts[J]. Cancer Res Treat, 2023, 55(1): 325-333. doi: 10.4143/crt.2022.008

    [6]

    Connors JM, Cozen W, Steidl C, et al. Hodgkin lymphoma[J]. Nat Rev Dis Primers, 2020, 6(1): 61. doi: 10.1038/s41572-020-0189-6

    [7]

    McDonald JI, Diab N, Arthofer E, et al. Epigenetic Therapies in Ovarian Cancer Alter Repetitive Element Expression in a TP53-Dependent Manner[J]. Cancer Res, 2021, 81(20): 5176-5189. doi: 10.1158/0008-5472.CAN-20-4243

    [8]

    Mansur MB, Greaves M. Convergent TP53 loss and evolvability in cancer[J]. BMC Ecol Evol, 2023, 23(1): 54. doi: 10.1186/s12862-023-02146-6

    [9]

    Tomicic MT, Dawood M, Efferth T. Epigenetic Alterations Upstream and Downstream of p53 Signaling in Colorectal Carcinoma[J]. Cancers(Basel), 2021, 13(16): 4072.

    [10]

    Duong VH, Ruppert AS, Mims AS, et al. Entospletinib with decitabine in acute myeloid leukemia with mutant TP53 or complex karyotype: A phase 2 substudy of the Beat AML Master Trial[J]. Cancer, 2023, 129: 2308-2320. doi: 10.1002/cncr.34780

    [11]

    Li Y. Modern epigenetics methods in biological research[J]. Methods, 2021, 187: 104-113. doi: 10.1016/j.ymeth.2020.06.022

    [12]

    Shawky SA, El-Borai MH, Khaled HM, et al. The prognostic impact of hypermethylation for a panel of tumor suppressor genes and cell of origin subtype on diffuse large B-cell lymphoma[J]. Mol Biol Rep, 2019, 46(4): 4063-4076. doi: 10.1007/s11033-019-04856-x

    [13]

    Hagemann S, Heil O, Lyko F, et al. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines[J]. PLoS One, 2011, 6: e17388. doi: 10.1371/journal.pone.0017388

    [14]

    Wang Z. Cell Cycle Progression and Synchronization: An Overview[J]. Methods Mol Biol, 2022, 2579: 3-23.

    [15]

    Pack LR, Daigh LH, Meyer T. Putting the brakes on the cell cycle: mechanisms of cellular growth arrest[J]. Curr Opin Cell Biol, 2019, 60: 106-113. doi: 10.1016/j.ceb.2019.05.005

    [16]

    Nadeu F, Martin-Garcia D, Clot G, et al. Genomic and epigenomic insights into the origin, pathogenesis, and clinical behavior of mantle cell lymphoma subtypes[J]. Blood, 2020, 136(12): 1419-1432. doi: 10.1182/blood.2020005289

    [17]

    Zhang J, Gu Y, Chen B. Drug-Resistance Mechanism and New Targeted Drugs and Treatments of Relapse and Refractory DLBCL[J]. Cancer Manag Res, 2023, 15: 245-255. doi: 10.2147/CMAR.S400013

    [18]

    张慧芳, 高倩, 王彤. 长链非编码RNA对弥漫大B细胞淋巴瘤患者的预后价值[J]. 中华疾病控制杂志, 2019, 23(8): 998-1002. https://www.cnki.com.cn/Article/CJFDTOTAL-JBKZ201908024.htm

    [19]

    Liu MK, Sun XJ, Gao XD, et al. Methylation alterations and advance of treatment in lymphoma[J]. Front Biosci(Landmark Ed), 2021, 26(9): 602-613. doi: 10.52586/4970

    [20]

    Martin P, Bartlett NL, Chavez JC, et al. Phase 1 study of oral azacitidine(CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL[J]. Blood, 2022, 139(8): 1147-1159. doi: 10.1182/blood.2021011679

    [21]

    周佩瑶, 赵红玉, 杨文采, 等. ZR2方案治疗老年难治性弥漫大B细胞淋巴瘤疗效观察[J]. 临床血液学杂志, 2022, 35(7): 495-499. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2022.07.009

    [22]

    Zhu F, Crombie JL, Ni W, et al. Hypomethylating agent decitabine sensitizes diffuse large B-cell lymphoma to venetoclax[J]. Haematologica, 2023 Aug 3. doi: 10.3324/haematol.2023.283245.Epubaheadofprint.

    [23]

    Qu C, Zou R, Wang P, et al. Decitabine-primed tandem CD19/CD22 CAR-T therapy in relapsed/refractory diffuse large B-cell lymphoma patients[J]. Front Immunol, 2022, 13: 969660. doi: 10.3389/fimmu.2022.969660

    [24]

    Wright GW, Huang DW, Phelan JD, et al. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications[J]. Cancer Cell, 2020, 37(4): 551-568. e14. doi: 10.1016/j.ccell.2020.03.015

    [25]

    寇海明, 卢聪, 李成功, 等. 1例难治性原发中枢弥漫大B细胞淋巴瘤CAR-T细胞治疗中的多学科联合诊治[J]. 临床血液学杂志, 2022, 35(9): 621-625. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2022.09.004

  • 加载中

(2)

(5)

计量
  • 文章访问数:  700
  • PDF下载数:  129
  • 施引文献:  0
出版历程
收稿日期:  2023-07-11
修回日期:  2023-09-26
刊出日期:  2024-01-01

目录