IG/TCR重排二代测序技术检测急性淋巴细胞白血病微小残留病的研究

徐岳一, 杨永公, 周敏, 等. IG/TCR重排二代测序技术检测急性淋巴细胞白血病微小残留病的研究[J]. 临床血液学杂志, 2024, 37(1): 51-55. doi: 10.13201/j.issn.1004-2806.2024.01.011
引用本文: 徐岳一, 杨永公, 周敏, 等. IG/TCR重排二代测序技术检测急性淋巴细胞白血病微小残留病的研究[J]. 临床血液学杂志, 2024, 37(1): 51-55. doi: 10.13201/j.issn.1004-2806.2024.01.011
XU Yueyi, YANG Yonggong, ZHOU Min, et al. Detection of minimal residual disease in acute lymphoblastic leukemia by next-generation sequencing of IG/TCR[J]. J Clin Hematol, 2024, 37(1): 51-55. doi: 10.13201/j.issn.1004-2806.2024.01.011
Citation: XU Yueyi, YANG Yonggong, ZHOU Min, et al. Detection of minimal residual disease in acute lymphoblastic leukemia by next-generation sequencing of IG/TCR[J]. J Clin Hematol, 2024, 37(1): 51-55. doi: 10.13201/j.issn.1004-2806.2024.01.011

IG/TCR重排二代测序技术检测急性淋巴细胞白血病微小残留病的研究

  • 基金项目:
    南京鼓楼医院临床研究专项资金(No:2022-LCYJ-PY-46)
详细信息

Detection of minimal residual disease in acute lymphoblastic leukemia by next-generation sequencing of IG/TCR

More Information
  • 目的 比较免疫球蛋白(IG)/T细胞受体(TCR)重排二代测序技术(next-generation sequencing,NGS)与其他急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)微小残留病(minimal residual disease,MRD)检测手段间的差异,评估IG/TCR重排NGS在ALL MRD监测中的价值。方法 回顾性分析2018年9月至2023年12月本院收治的25例ALL患者,同时采用NGS、流式细胞术(FCM)和实时定量聚合酶链反应技术(q-PCR)检测MRD。结果 48.0%的患者初诊时NGS检测存在3个或以上异常高频克隆。81.3%的患者治疗后的主要残留克隆与初诊时最高频克隆一致。在FCM判定MRD阴性的69例样本中24例(34.8%)经NGS检测仍阳性,MRD中位水平为4.13×10-5,显著低于FCM阳性患者的MRD水平(4.70×10-3)(P < 0.05)。Ph+ALL患者同时采用NGS、q-PCR、FCM三种方法进行MRD检测,阳性率依次为59.1%、50.0%、27.3%,NGS阳性率显著高于FCM(P=0.035)。FCM判定阴性的16例样本中7例(43.8%)经NGS检测为阳性,中位MRD水平为1.99×10-5,较NGS/FCM双阳性组的中位MRD水平有降低趋势,但差异无统计学意义(P>0.05)。q-PCR判定阴性的11例样本中3例(27.3%)经NGS检测为阳性,中位MRD水平为7.59×10-6,较NGS/q-PCR双阳性组的中位MRD水平有降低趋势,但差异亦无统计学意义(P=0.053)。结论 NGS检测MRD的灵敏度和深度均优于FCM;Ph+ALL患者中NGS检测的灵敏度及深度较q-PCR有改善趋势。IG/TCR重排NGS是能保证足够检测深度的有效MRD检测手段。
  • 加载中
  • 表 1  NGS和FCM检测治疗后MRD(89例次)

    中位MRD FCM(+)(20例次) FCM(-)(69例次)
    NGS(+)(17例次) NGS(-)(3例次) NGS(+)(24例次) NGS(-)(45例次)
    NGS 4.53×10-2△ (1.21×10-6~6.50×10-1) MRD为阴性 4.13×10-5 (2.74×10-7~4.67×10-2) MRD为阴性
    FCM 4.70×10-3△ (4.00×10-4~9.15×10-1) 3.00×10-4 (5.00×10-5~1.00×10-4) MRD为阴性 MRD为阴性
    3.25×10-3△(4.00×10-4~9.15×10-1) MRD为阴性 MRD为阴性
    与NGS(+)/FCM(-)比较,P < 0.05。
    下载: 导出CSV

    表 2  Ph+ALL治疗后样本MRD检测(22例次)

    中位MRD q-PCR(+)(11例次) q-PCR(-)(11例次)
    NGS(+)(10例次) NGS(-)(1例次) NGS(+)(3例次) NGS(-)(8例次)
    NGS 5.32×10-3 (1.26×10-5~2.62×10-1) MRD为阴性 7.59×10-6 (6.00×10-6~8.40×10-4) MRD为阴性
    q-PCR 2.49×10-2 (2.00×10-3~1.82×10-1) 1.30×10-2 MRD为阴性 MRD为阴性
    2.40×10-2(2.00×10-3~1.82×10-1) MRD为阴性 MRD为阴性
    下载: 导出CSV
  • [1]

    Juárez-Avendano G, Méndez-Ramirez N, Luna-Silva NC, et al. Molecular and cellular markers for measurable residual disease in acute lymphoblastic leukemia[J]. Bol Med Hosp Infant Mex, 2021, 78(3): 159-170.

    [2]

    Jabbour E, Short NJ, Jain N, et al. The evolution of acute lymphoblastic leukemia research and therapy at MD Anderson over four decades[J]. J Hematol Oncol, 2023, 16(1): 22. doi: 10.1186/s13045-023-01409-5

    [3]

    Saygin C, Cannova J, Stock W, et al. Measurable residual disease in acute lymphoblastic leukemia: methods and clinical context in adult patients[J]. Haematologica, 2022, 107(12): 2783-2793. doi: 10.3324/haematol.2022.280638

    [4]

    张宜婧, 沈利, 向春丽, 等. 成人急性淋巴细胞白血病免疫治疗进展[J]. 临床血液学杂志, 2022, 35(1): 82-86. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2022.01.016

    [5]

    Yu CH, Jou ST, Su YH, et al. Clinical impact of minimal residual disease and genetic subtypes on the prognosis of childhood acute lymphoblastic leukemia[J]. Cancer, 2023, 129(5): 790-802. doi: 10.1002/cncr.34606

    [6]

    中国抗癌协会血液肿瘤专业委员会, 中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性淋巴细胞白血病诊断与治疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(9): 705-716. https://www.cnki.com.cn/Article/CJFDTOTAL-LCXZ202203002.htm

    [7]

    Short NJ, Jabbour E, Albitar M, et al. Recommendations for the assessment and management of measurable residual disease in adults with acute lymphoblastic leukemia: A consensus of North American experts[J]. Am J Hematol, 2019, 94(2): 257-265. doi: 10.1002/ajh.25338

    [8]

    张之南, 沈悌. 血液病诊断及疗效标准. 3版[J]. 科学技术出版社, 2007: 116-120.

    [9]

    Ching T, Duncan ME, Newman-Eerkes T, et al. Analytical evaluation of the clonoSEQ Assay for establishing measurable(minimal)residual disease in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma[J]. BMC Cancer, 2020, 20(1): 612. doi: 10.1186/s12885-020-07077-9

    [10]

    Zhao XS, Liu YR, Xu LP, et al. Minimal residual disease status determined by multiparametric flow cytometry pretransplantation predicts the outcome of patients with ALL receiving unmanipulated haploidentical allografts[J]. Am J Hematol, 2019, 94(5): 512-521. doi: 10.1002/ajh.25417

    [11]

    徐岳一, 杨永公, 欧阳建. 急性淋巴细胞白血病微小残留病不同监测方法比较[J]. 白血病·淋巴瘤, 2020, 29(10): 577-580.

    [12]

    Jeha S, Choi J, Roberts KG, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy[J]. Blood Cancer Discov, 2021, 2(4): 326-337. doi: 10.1158/2643-3230.BCD-20-0229

    [13]

    Pulsipher MA, Han X, Maude SL, et al. Next-Generation Sequencing of Minimal Residual Disease for Predicting Relapse after Tisagenlecleucel in Children and Young Adults with Acute Lymphoblastic Leukemia[J]. Blood Cancer Discov, 2022, 3(1): 66-81. doi: 10.1158/2643-3230.BCD-21-0095

    [14]

    Contreras Yametti GP, Ostrow TH, Jasinski S, et al. Minimal Residual Disease in Acute Lymphoblastic Leukemia: Current Practice and Future Directions[J]. Cancers(Basel), 2021, 13(8): 1847.

    [15]

    Wu D, Emerson RO, Sherwood A, et al. Detection of minimal residual disease in B lymphoblastic leukemia by high-throughput sequencing of IGH[J]. Clin Cancer Res, 2014, 20(17): 4540-4548. doi: 10.1158/1078-0432.CCR-13-3231

    [16]

    Kotrova M, Koopmann J, Trautmann H, et al. Prognostic value of low-level MRD in adult acute lymphoblastic leukemia detected by low-and high-throughput methods[J]. Blood Adv, 2022, 6(10): 3006-3010. doi: 10.1182/bloodadvances.2021006727

    [17]

    Modvig S, Hallbook H, Madsen HO, et al. Value of flow cytometry for MRD-based relapse prediction in B-cell precursor ALL in a multicenter setting[J]. Leukemia, 2021, 35(7): 1894-1906. doi: 10.1038/s41375-020-01100-5

    [18]

    Logan AC. Measurable residual disease in acute lymphoblastic leukemia: How low is low enough?[J]. Best Pract Res Clin Haematol, 2022, 35(4): 101407. doi: 10.1016/j.beha.2022.101407

    [19]

    Chen W, Karandikar NJ, McKenna RW, et al. Stability of leukemia-associated immunophenotypes in precursor B-lymphoblastic leukemia/lymphoma: a single institution experience[J]. Am J Clin Pathol, 2007, 127(1): 39-46.

    [20]

    Theunissen PMJ, de Bie M, van Zessen D, et al. Next-generation antigen receptor sequencing of paired diagnosis and relapse samples of B-cell acute lymphoblastic leukemia: Clonal evolution and implications for minimal residual disease target selection[J]. Leuk Res, 2019, 76: 98-104.

    [21]

    Sekiya Y, Xu Y, Muramatsu H, et al. Clinical utility of next-generation sequencing-based minimal residual disease in paediatric B-cell acute lymphoblastic leukaemia[J]. Br J Haematol, 2017, 176(2): 248-257.

    [22]

    苟阳, 张诚, 文钦, 等. BCR-ABL阳性急性淋巴细胞白血病微小残留病的检测及其预后研究[J]. 重庆医学, 2022, 51(1): 54-59. https://www.cnki.com.cn/Article/CJFDTOTAL-CQYX202201012.htm

    [23]

    何静, 胡俊斌. 成人急性淋巴细胞白血病诊断和治疗之浅见[J]. 临床血液学杂志, 2022, 35(3): 221-224. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2022.03.014

    [24]

    Zuna J, Hovorkova L, Krotka J, et al. Minimal residual disease in BCR: : ABL1-positive acute lymphoblastic leukemia: different significance in typical ALL and in CML-like disease[J]. Leukemia, 2022, 36(12): 2793-2801.

  • 加载中
计量
  • 文章访问数:  790
  • PDF下载数:  196
  • 施引文献:  0
出版历程
收稿日期:  2023-08-11
刊出日期:  2024-01-01

目录