Progress in the treatment of adult acute myeloid leukaemia with NUP98 rearrangement
-
摘要: 急性髓系白血病(acute myeloid leukaemia,AML)伴NUP98重排作为AML的罕见亚型,在《第5版造血与淋巴组织肿瘤分类》伴重现性遗传学异常AML分类中被单独归为一类。这种亚型通常在儿童AML中相对较为多见,但在成人中检出率仅为2%左右。NUP98基因可与其多种融合伴侣共同参与AML的发病过程,其中包括HOX基因家族和其他非HOX基因,同时常伴有其他突变如FLT3-ITD、WT1、NRAS等。在成人AML中,NUP98基因重排主要以NUP98∷HOXA9和NUP98∷NSD1为主。各种实验证明NUP98重排具有白血病致病性,其融合蛋白通过影响转录调控、染色质重塑等机制,促使白血病的发生。同时,NUP98重排的患者在临床上表现出独特的特征,如好发于年轻、女性患者,伴有明显的出血症状。这类患者的预后通常较差,复发率高。目前治疗NUP98重排AML仍面临挑战,缺乏特异的靶向药物,但异基因造血干细胞移植在改善预后方面显示出显著疗效。因此,NUP98基因重排AML作为成人AML中的罕见高危亚型,需要进一步深入研究开发更为有效的治疗策略。Abstract: Acute myeloid leukaemia(AML) with NUP98 rearrangement is classified as a new separate category of AML with defining genetic abnormalities in the 5th edition of the World Health Organization Classification of Haematolymphoid Tumours. This rare subtype is usually relatively common in children with AML but only occurs in about 2% of adults. NUP98 gene can participate in the pathogenesis of AML with a variety of fusion partners, including HOX genes and non-HOX genes, and is often accompanied by other mutations such as FLT3-ITD, WT1, and NRAS. In adult AML, NUP98 gene rearrangements are mainly dominated by NUP98∷HOXA9 and NUP98∷NSD1. Various experiments have demonstrated that the NUP98 fusion oncoproteins can drive leukemogenesis by affecting transcriptional regulation, chromatin remodeling, and other mechanisms. Patients with NUP98 rearrangement exhibit distinctive clinical features, including evident bleeding symptoms and a worse outcome, with a higher prevalence among young females. Currently, the treatment of NUP98 rearrangement AML is confronted with challenges, lacking specific targeted drugs. Nevertheless, allogeneic hematopoietic stem cell transplantation has shown significant efficacy in improving prognosis. Therefore, NUP98 -rearranged AML defined as a rare and high-risk leukemia subset, requires further more extensive research to develop better therapeutic strategies.
-
Key words:
- acute myeloid leukemia /
- NUP98 /
- gene rearrangement
-
-
[1] Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms[J]. Leukemia, 2022, 36(7): 1703-1719. doi: 10.1038/s41375-022-01613-1
[2] Bertrums EJM, Smith JL, Harmon L, et al. Comprehensive molecular and clinical characterization of NUP98 fusions in pediatric acute myeloid leukemia[J]. Haematologica, 2023, 108(8): 2044-2058. doi: 10.3324/haematol.2022.281653
[3] Struski S, Lagarde S, Bories P, et al. NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis[J]. Leukemia, 2017, 31(3): 565-572. doi: 10.1038/leu.2016.267
[4] Xie W, Raess PW, Dunlap J, et al. Adult acute myeloid leukemia patients with NUP98 rearrangement have frequent cryptic translocations and unfavorable outcome[J]. Leuk Lymphoma, 2022, 63(8): 1907-1916. doi: 10.1080/10428194.2022.2047672
[5] Cheng WY, Li JF, Zhu YM, et al. Transcriptome-based molecular subtypes and differentiation hierarchies improve the classification framework of acute myeloid leukemia[J]. Proc Natl Acad Sci U S A, 2022, 119(49): e2211429119. doi: 10.1073/pnas.2211429119
[6] Shah A, Sharma A, Katiyar S, et al. Upfront Screening by Quantitative Real-Time PCR Assay Identifies NUP98∷NSD1 Fusion Transcript in Indian AML Patients[J]. Diagnostics(Basel), 2022, 12(12): 3001.
[7] Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern[J]. Blood, 2011, 118(13): 3645-3656. doi: 10.1182/blood-2011-04-346643
[8] Thol F, Kölking B, Hollink IHI, et al. Analysis of NUP98/NSD1 translocations in adult AML and MDS patients[J]. Leukemia, 2013, 27(3): 750-754. doi: 10.1038/leu.2012.249
[9] Blevins MB, Smith AM, Phillips EM, et al. Complex formation among the RNA export proteins Nup98, Rae1/Gle2, and TAP[J]. J Biol Chem, 2003, 278(23): 20979-20988. doi: 10.1074/jbc.M302061200
[10] Kalverda B, Pickersgill H, Shloma VV, et al. Nucleoporins Directly Stimulate Expression of Developmental and Cell-Cycle Genes Inside the Nucleoplasm[J]. Cell, 2010, 140(3): 360-371. doi: 10.1016/j.cell.2010.01.011
[11] Michmerhuizen NL, Klco JM, Mullighan CG. Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies[J]. Blood, 2020, 136(20): 2275-2289. doi: 10.1182/blood.2020007093
[12] Wei S, Wang S, Qiu S, et al. Clinical and laboratory studies of 17 patients with acute myeloid leukemia harboring t(7;11)(p15;p15) translocation[J]. Leuk Res, 2013, 37(9): 1010-1015. doi: 10.1016/j.leukres.2013.05.020
[13] Chou WC, Chen CY, Hou HA, et al. Acute myeloid leukemia bearing t(7;11)(p15;p15) is a distinct cytogenetic entity with poor outcome and a distinct mutation profile: comparative analysis of 493 adult patients[J]. Leukemia, 2009, 23(7): 1303-1310. doi: 10.1038/leu.2009.25
[14] Shiba N, Ichikawa H, Taki T, et al. NUP98-NSD1 gene fusion and its related gene expression signature are strongly associated with a poor prognosis in pediatric acute myeloid leukemia[J]. Genes Chromosomes Cancer, 2013, 52(7): 683-693. doi: 10.1002/gcc.22064
[15] Marceau-Renaut A, Duployez N, Ducourneau B, et al. Molecular Profiling Defines Distinct Prognostic Subgroups in Childhood AML: A Report From the French ELAM02 Study Group[J]. HemaSphere, 2018, 2(1): e31. doi: 10.1097/HS9.0000000000000031
[16] Kroon E, Thorsteinsdottir U, Mayotte N, et al. NUP98-HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice[J]. EMBO J, 2001, 20(3): 350-361. doi: 10.1093/emboj/20.3.350
[17] Dash AB, Williams IR, Kutok JL, et al. A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9[J]. Proc Natl Acad Sci U S A, 2002, 99(11): 7622-7627. doi: 10.1073/pnas.102583199
[18] Shima Y, Yumoto M, Katsumoto T, et al. MLL is essential for NUP98-HOXA9-induced leukemia[J]. Leukemia, 2017, 31(10): 2200-2210. doi: 10.1038/leu.2017.62
[19] Heikamp EB, Henrich JA, Perner F, et al. The menin-MLL1 interaction is a molecular dependency in NUP98-rearranged AML[J]. Blood, 2022, 139(6): 894-906. doi: 10.1182/blood.2021012806
[20] Slape C, Liu LY, Beachy S, et al. Leukemic transformation in mice expressing a NUP98-HOXD13 transgene is accompanied by spontaneous mutations in Nras, Kras, and Cbl[J]. Blood, 2008, 112(5): 2017-2019. doi: 10.1182/blood-2008-01-135186
[21] Humeniuk R, Koller R, Bies J, et al. Brief report: Loss of p15Ink4b accelerates development of myeloid neoplasms in Nup98-HoxD13 transgenic mice[J]. Stem Cells, 2014, 32(5): 1361-1366. doi: 10.1002/stem.1635
[22] Cheng G, Liu F, Asai T, et al. Loss of p300 accelerates MDS-associated leukemogenesis[J]. Leukemia, 2017, 31(6): 1382-1390. doi: 10.1038/leu.2016.347
[23] Imren S, Heuser M, Gasparetto M, et al. Modeling de novo leukemogenesis from human cord blood with MN1 and NUP98HOXD13[J]. Blood, 2014, 124(24): 3608-3612. doi: 10.1182/blood-2014-04-564666
[24] Palmqvist L, Argiropoulos B, Pineault N, et al. The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia[J]. Blood, 2006, 108(3): 1030-1036. doi: 10.1182/blood-2005-12-007005
[25] Bisio V, Zampini M, Tregnago C, et al. NUP98-fusion transcripts characterize different biological entities within acute myeloid leukemia: a report from the AIEOP-AML group[J]. Leukemia, 2017, 31(4): 974-977. doi: 10.1038/leu.2016.361
[26] Gough S M, Slape CI, Aplan PD. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights[J]. Blood, 2011, 118(24): 6247-6257. doi: 10.1182/blood-2011-07-328880
[27] Wang GG, Cai L, Pasillas MP, et al. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis[J]. Nature Cell Biology, 2007, 9(7): 804-812. doi: 10.1038/ncb1608
[28] Yassin ER, Abdul-Nabi AM, Takeda A, et al. Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif[J]. Leukemia, 2010, 24(5): 1001-1011. doi: 10.1038/leu.2010.42
[29] Kasper LH, Brindle PK, Schnabel CA, et al. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity[J]. Mol Cell Biol, 1999, 19(1): 764-776. doi: 10.1128/MCB.19.1.764
[30] Jankovic D, Gorello P, Liu T, et al. Leukemogenic mechanisms and targets of a NUP98/HHEX fusion in acute myeloid leukemia[J]. Blood, 2008, 111(12): 5672-5682. doi: 10.1182/blood-2007-09-108175
[31] Calvo KR, Sykes DB, Pasillas MP, et al. Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1[J]. Oncogene, 2002, 21(27): 4247-4256. doi: 10.1038/sj.onc.1205516
[32] Gough SM, Lee F, Yang F, et al. NUP98-PHF23 is a chromatin-modifying oncoprotein that causes a wide array of leukemias sensitive to inhibition of PHD histone reader function[J]. Cancer Discov, 2014, 4(5): 564-577. doi: 10.1158/2159-8290.CD-13-0419
[33] Takeda A, Sarma NJ, Abdul-Nabi AM, et al. Inhibition of CRM1-mediated nuclear export of transcription factors by leukemogenic NUP98 fusion proteins[J]. J Biol Chem, 2010, 285(21): 16248-16257. doi: 10.1074/jbc.M109.048785
[34] Xu H, Valerio DG, Eisold ME, et al. NUP98 Fusion Proteins Interact with the NSL and MLL1 Complexes to Drive Leukemogenesis[J]. Cancer Cell, 2016, 30(6): 863-878. doi: 10.1016/j.ccell.2016.10.019
[35] Franks TM, McCloskey A, Shokirev MN, et al. Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells[J]. Genes Dev, 2017, 31(22): 2222-2234. doi: 10.1101/gad.306753.117
[36] Ahn JH, Davis ES, Daugird TA, et al. Phase separation drives aberrant chromatin looping and cancer development[J]. Nature, 2021, 595(7868): 591-595. doi: 10.1038/s41586-021-03662-5
[37] Chandra B, Michmerhuizen NL, Shirnekhi HK, et al. Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation[J]. Cancer Discov, 2022, 12(4): 1152-1169. doi: 10.1158/2159-8290.CD-21-0674
[38] Fasan A, Haferlach C, Alpermann T, et al. A rare but specific subset of adult AML patients can be defined by the cytogenetically cryptic NUP98-NSD1 fusion gene[J]. Leukemia, 2013, 27(1): 245-248. doi: 10.1038/leu.2012.230
[39] Thanasopoulou A, Tzankov A, Schwaller J. Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction[J]. Haematologica, 2014, 99(9): 1465-1471. doi: 10.3324/haematol.2013.100917
[40] Ostronoff F, Othus M, Gerbing RB, et al. NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report[J]. Blood, 2014, 124(15): 2400-2407. doi: 10.1182/blood-2014-04-570929
[41] Wang GG, Song J, Wang Z, et al. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger[J]. Nature, 2009, 459(7248): 847-851. doi: 10.1038/nature08036
[42] Rasouli M, Blair H, Troester S, et al. The MLL-Menin Interaction is a Therapeutic Vulnerability in NUP98-rearranged AML[J]. HemaSphere, 2023, 7(8): e935. doi: 10.1097/HS9.0000000000000935
[43] Schmoellerl J, Barbosa IAM, Eder T, et al. CDK6 is an essential direct target of NUP98 fusion proteins in acute myeloid leukemia[J]. Blood, 2020, 136(4): 387-400. doi: 10.1182/blood.2019003267
[44] Kivioja JL, Thanasopoulou A, Kumar A, et al. Dasatinib and navitoclax act synergistically to target NUP98-NSD1+/FLT3-ITD+ acute myeloid leukemia[J]. Leukemia, 2019, 33(6): 1360-1372. doi: 10.1038/s41375-018-0327-2
[45] Shen Y, Zhang T, Zhang L, et al. Allogeneic stem cell transplantation can prolong the survival of patients with NUP98-rearranged acute myeloid leukemia[J]. Bone Marrow Transplant, 2023, 58(10): 1149-1151. doi: 10.1038/s41409-023-02030-3
[46] Harada K, Doki N, Aoki J, et al. Outcomes after allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia harboring t(7;11)(p15;p15)[J]. Haematologica, 2018, 103(2): e69-e72. doi: 10.3324/haematol.2017.179804
-
计量
- 文章访问数: 2106
- PDF下载数: 2403
- 施引文献: 0