基于分子倒置探针和二代测序技术的高通量Kidd血型基因分型

周水梅, 陈明, 黄小星, 等. 基于分子倒置探针和二代测序技术的高通量Kidd血型基因分型[J]. 临床血液学杂志, 2024, 37(4): 240-245. doi: 10.13201/j.issn.1004-2806.2024.04.004
引用本文: 周水梅, 陈明, 黄小星, 等. 基于分子倒置探针和二代测序技术的高通量Kidd血型基因分型[J]. 临床血液学杂志, 2024, 37(4): 240-245. doi: 10.13201/j.issn.1004-2806.2024.04.004
ZHOU Shuimei, CHEN Ming, HUANG Xiaoxing, et al. High-throughput Kidd blood group genotyping based on molecular inversion probe and next generation sequencing technology[J]. J Clin Hematol, 2024, 37(4): 240-245. doi: 10.13201/j.issn.1004-2806.2024.04.004
Citation: ZHOU Shuimei, CHEN Ming, HUANG Xiaoxing, et al. High-throughput Kidd blood group genotyping based on molecular inversion probe and next generation sequencing technology[J]. J Clin Hematol, 2024, 37(4): 240-245. doi: 10.13201/j.issn.1004-2806.2024.04.004

基于分子倒置探针和二代测序技术的高通量Kidd血型基因分型

  • 基金项目:
    武汉大学中南医院科技成果转化基金项目(No: 2023CGZH-MS005)
详细信息

High-throughput Kidd blood group genotyping based on molecular inversion probe and next generation sequencing technology

More Information
  • 目的 开发一种基于分子倒置探针(molecular inversion probe,MIP)捕获技术的靶向二代测序(next generation sequencing,NGS)血型分型方法,以允许在一次运行中同时鉴定大量患者的Kidd血型。方法 提取基因组DNA后,使用MIP探针捕获靶标。然后,使用带有样品条形码和Illumina衔接子的引物通过聚合酶链式反应(PCR)扩增产物,之后使用Illumina MiSeq对样品进行测序。用序列特异引物引导的聚合酶链反应(PCR-SSP)和新建方法同时检测10例献血者样品的Kidd血型以确定新建立的方法是否能够有效检测JKAJKB等位基因。然后用基于MIP的NGS方法和血清学方法检测100例样本并比较结果的一致性。结果 基于MIP的NGS血型分型方法检测10例样本的结果均与PCR-SSP所得结果相同,表明新建方法能够有效检测JKAJKB等位基因。建立的基于MIP的NGS分型方法检测100例样本的基因分型结果与血清学方法检测结果一致率为100%。在100例随机样本中,Jka和Jkb的频率分别为0.39和0.61,抗原频率符合其在东方人群中的分布规律。结论 基于MIP的NGS方法是一种可行的血型分析策略,允许进行大规模的Kidd血型检测。此外,将这种MIP方法扩展到新的血型系统只需要加入新的捕获探针。
  • 加载中
  • 图 1  分子倒置探针

    图 2  PCR引物

    图 3  双分子标签对MIP捕获目标区域的影响

    图 4  样本标签对引物扩增效率的影响

    图 5  杂交时间的优化

    图 6  1~10号样本PCR-SSP电泳结果

    表 1  基于MIP的NGS方法所用的MIP和通用引物

    名称 序列 长度/bp
    MIP-Kidd-1 TGAGGCAATGCATGGGATGGANNNN
    AGATCGGAAGAGCACACGTGACTCGCCAAGCTGAAG
    NNNNNNNNNNCCCAGAGTCCAAAGTAGATGT
    92
    MIP-Kidd-2 GAGGAATGTTCATGGCGCTCACNNNN
    AGATCGGAAGAGCACACGTGACTCGCCAAGCTGAAG
    NNNNNNNNNNGAGATCTTGGCTTCCTAGGGA
    93
    通用正向引物 CGTGTGCTCTTCCGATCT 18
    通用反向引物 TGACTCGCCAAGCTGAAG 18
    注:加粗表示与基因组DNA互补的同源序列;斜体表示分子标志符;下划线表示引物互补序列。
    下载: 导出CSV

    表 2  所选引物

    引物名称 序列(5’-3’) 扩增产物长度/bp
    JKA F:GAGTTCTGACCCCTCCTGTCTTA
    R:TGAGCGCCATGAACATTCC
    301
    JKB F:AGTCTTCAGCCCCATTTGAGA
    R:GAGCCAGGAGGTGGGTTTGC
    121
    HGH F:GCCTTCCCAACCATTCCCTTA
    R:TCACGGATTTCTGTTGTGTTT
    429
    下载: 导出CSV

    表 3  血清学方法与MIP法比较

    抗原 血清学方法/例 MIP法/例 一致率/%
    Jka 62 62 100
    Jkb 84 84 100
    下载: 导出CSV

    表 4  100名献血者Kidd血型表型和基因频率分布情况

    表型 观察值 期望值 基因频率 χ2 P
    Jk(a+b-) 16 14.82 Jka=0.39 0.134 >0.05
    Jk(a+b+) 46 47.36 Jkb=0.61
    Jk(a-b+) 38 37.82
    Jk(a-b-) 0 0
    下载: 导出CSV
  • [1]

    Deb J, Kaur D, Sil S, et al. Delayed haemolytic transfusion reaction due to Kidd antibodies[J]. Transfus Clin Biol, 2022, 29(3): 269-272. doi: 10.1016/j.tracli.2022.03.001

    [2]

    Sarihi R, Oodi A, Dadkhah TR, et al. Blood group genotyping in alloimmunized multi-transfused thalassemia patients from Iran[J]. Mol Genet Genomic Med, 2021, 9(7): e1701. doi: 10.1002/mgg3.1701

    [3]

    Halawani AJ, Saboor M, Abu-Tawil HI, et al. The frequencies of Kidd blood group antigens and phenotypes among Saudi blood donors in Southwestern Saudi Arabia[J]. Saudi J Biol Sci, 2022, 29(1): 251-254. doi: 10.1016/j.sjbs.2021.08.081

    [4]

    姚润, 杨涓, 李宁. 不同血型系统胎儿或新生儿溶血病的特点[J]. 临床血液学杂志, 2021, 34(12): 890-893. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2021.12.016

    [5]

    Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences[J]. Blood, 2019, 133(17): 1821-1830. doi: 10.1182/blood-2018-08-833962

    [6]

    Mandal S, Malhotra S, Negi G, et al. Severe hemolytic disease of the fetus and newborn due to anti-E and anti-Jka[J]. Immunohematology, 2020, 36(2): 60-63. doi: 10.21307/immunohematology-2020-043

    [7]

    Denomme GA, Westhoff CM, Castilho LM, et al. Consortium for blood group genes(CBGG): 2009 report[J]. Immunohematology, 2010, 26(2): 47-50. doi: 10.21307/immunohematology-2019-201

    [8]

    秦斐, 何吉, 王芳, 等. 产前非创伤性检测胎儿kidd血型基因型方法的建立及其应用[J]. 中国卫生检验杂志, 2011, 21(2): 274-276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201102007.htm

    [9]

    Erhabor O, Hassan M, Alhaji YB, et al. Kidd blood group phenotypes among pregnant women in Sokoto, North Western Nigeria[J]. Asian Pac J Trop Med, 2014, 7S1: S111-S115.

    [10]

    Saleh RM, Zefarina Z, Che Mat NF, et al. Transfusion medicine and molecular genetic methods[J]. Int J Prev Med, 2018, 9: 45. doi: 10.4103/ijpvm.IJPVM_232_16

    [11]

    Allhoff W, Weidner L, Lindlbauer N, et al. Jknull alleles in two patients with anti-Jk3[J]. Trasfusione Del Sangue, 2021, 19(3): 237-243.

    [12]

    Samuel J, Vege S, Aeschlimann J, et al. Novel JK allele background associated with production of anti-JK3 during pregnancy[J]. Transfusion, 2018, 58(4): 1078-1079. doi: 10.1111/trf.14514

    [13]

    孙长杰, 王晓宁, 卢伟伟, 等. 红细胞Kidd血型抗原研究现状及进展[J]. 中国实验诊断学, 2020, 24(2): 340-343. doi: 10.3969/j.issn.1007-4287.2020.02.047

    [14]

    Kanani AN, Senjaliya SB, Rajapara MM, et al. A rare case of naturally occurring allo anti-Jk(a)missed in manual screening test on tube method[J]. Asian J Transfus Sci, 2020, 14(1): 60-62. doi: 10.4103/ajts.AJTS_104_19

    [15]

    杨红梅, 虞茜, 邹昕, 等. 抗-E、抗-Lea合并抗-Jkb、抗-Cw致疑难配血及输血反应分析[J]. 临床血液学杂志, 2022, 35(12): 892-896. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2022.12.013

    [16]

    Lomas-Francis C. The value of DNA analysis for antigens of the Kidd blood group system[J]. Transfusion, 2007, 47(Suppl 1): 23S-27S.

    [17]

    Westhoff CM. Blood group genotyping[J]. Blood, 2019, 133(17): 1814-1820. doi: 10.1182/blood-2018-11-833954

    [18]

    Fürst D, Tsamadou C, Neuchel C, et al. Next-generation sequencing technologies in blood group typing[J]. Transfus Med Hemother, 2020, 47(1): 4-13. doi: 10.1159/000504765

    [19]

    Kim TY, Yu HB, Phan MT, et al. Application of blood group genotyping by next-generation sequencing in various immunohaematology cases[J]. Transfus Med Hemother, 2022, 49(2): 88-96. doi: 10.1159/000517565

    [20]

    McBean R, Liew YW, Wilson B, et al. Genotyping confirms inheritance of the rare At(a-)type in a case of haemolytic disease of the newborn[J]. J Pathol Clin Res, 2015, 2(1): 53-55.

    [21]

    Cvejic A, Haer-Wigman L, Stephens JC, et al. SMIM1 underlies the Vel blood group and influences red blood cell traits[J]. Nat Genet, 2013, 45(5): 542-545. doi: 10.1038/ng.2603

    [22]

    章昊, 梁爽, 李乐兵, 等. 流式细胞术应用于Kidd血型Jka抗原检测的建立[J]. 中国实验血液学杂志, 2022, 30(1): 250-255. https://www.cnki.com.cn/Article/CJFDTOTAL-XYSY202201040.htm

    [23]

    McCombie WR, McPherson JD, Mardis ER. Next-generation sequencing technologies[J]. Cold Spring Harb Perspect Med, 2019, 9(11): a036798. doi: 10.1101/cshperspect.a036798

    [24]

    Hussen BM, Abdullah ST, Salihi A, et al. The emerging roles of NGS in clinical oncology and personalized medicine[J]. Pathol Res Pract, 2022, 230: 153760. doi: 10.1016/j.prp.2022.153760

    [25]

    Colomer R, Mondejar R, Romero-Laorden N, et al. When should we order a next generation sequencing test in a patient with cancer?[J]. E Clin Med, 2020, 25: 100487.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  456
  • PDF下载数:  70
  • 施引文献:  0
出版历程
收稿日期:  2023-05-02
刊出日期:  2024-04-01

目录