急性淋巴细胞白血病免疫与靶向治疗的临床应用

洪梅, 李紫璇. 急性淋巴细胞白血病免疫与靶向治疗的临床应用[J]. 临床血液学杂志, 2024, 37(5): 312-317. doi: 10.13201/j.issn.1004-2806.2024.05.006
引用本文: 洪梅, 李紫璇. 急性淋巴细胞白血病免疫与靶向治疗的临床应用[J]. 临床血液学杂志, 2024, 37(5): 312-317. doi: 10.13201/j.issn.1004-2806.2024.05.006
HONG Mei, LI Zixuan. Clinical application of immune and targeted therapy for acute lymphoblastic leukemia[J]. J Clin Hematol, 2024, 37(5): 312-317. doi: 10.13201/j.issn.1004-2806.2024.05.006
Citation: HONG Mei, LI Zixuan. Clinical application of immune and targeted therapy for acute lymphoblastic leukemia[J]. J Clin Hematol, 2024, 37(5): 312-317. doi: 10.13201/j.issn.1004-2806.2024.05.006

急性淋巴细胞白血病免疫与靶向治疗的临床应用

详细信息
    作者简介:

    专家简介:洪梅,华中科技大学同济医学院附属协和医院血液科党总支书记,医疗副主任,三级教授,主任医师,博士生导师。曾赴德国海徳堡大学医学院血管内科和萨尔州大学医学院血液科学习,获医学博士。担任中华血液学会红细胞专业组委员、中国中西医结合学会血液学专委会常委、中国老年医学会血液学移植感染专委会委员、中国女医师协会血栓与止血学组常委、湖北省生物免疫学会血栓与止血MDT专委会主任委员、湖北省抗癌协会血液学分会MDS/MPN专业组副组长、湖北省中西医结合学会血液病分会常委。主持多项国家自然科学基金项目、省重点研发项目等国家省部级课题,作为主要负责人参与卫生部临床重点学科、973计划、教育部重大疾病生物靶向治疗创新团队等重大科研项目。在LeukemiaClinical Infectious Diseases等期刊发表相关论文60余篇,获湖北省科技进步一等奖两项,湖北省科技进步三等奖一项

    通讯作者: 洪梅, E-mail: hmxh@hust.edu.cn
  • 中图分类号: R733.71

Clinical application of immune and targeted therapy for acute lymphoblastic leukemia

More Information
  • 近年来,免疫与靶向治疗由于其独特的作用机制及较弱的不良反应成为急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL)治疗中备受关注的新型疗法,许多研究致力于推出针对不同疾病阶段,特别是复发/难治ALL患者的新型免疫与靶向药物联合或不联合化疗的治疗方案,取得了显著的临床疗效,对ALL患者临床用药具有较大的指导价值。现针对ALL热点免疫与靶向治疗方案进行综述。
  • 加载中
  • [1]

    Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia[J]. Haematologica, 2020, 105(11): 2524-2539. doi: 10.3324/haematol.2020.247031

    [2]

    Jabbour E, Short NJ, Jain N, et al. The evolution of acute lymphoblastic leukemia research and therapy at MD Anderson over four decades[J]. J Hematol Oncol, 2023, 16(1): 22. doi: 10.1186/s13045-023-01409-5

    [3]

    Barsan V, Ramakrishna S, Davis KL. Immunotherapy for the Treatment of Acute Lymphoblastic Leukemia[J]. Curr Oncol Rep, 2020, 22(2): 11. doi: 10.1007/s11912-020-0875-2

    [4]

    Przespolewski A, Szeles A, Wang ES. Advances in immunotherapy for acute myeloid leukemia[J]. Future Oncol, 2018, 14(10): 963-978. doi: 10.2217/fon-2017-0459

    [5]

    Lamb YN. Inotuzumab Ozogamicin: First Global Approval[J]. Drugs, 2017, 77(14): 1603-1610. doi: 10.1007/s40265-017-0802-5

    [6]

    Kantarjian HM, Deangelo DJ, Stelljes M, et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia[J]. N Engl J Med, 2016, 375(8): 740-753. doi: 10.1056/NEJMoa1509277

    [7]

    Tvito A, Rowe JM. Inotuzumab ozogamicin for the treatment of acute lymphoblastic leukemia[J]. Expert Opin Biol Ther, 2017, 17(12): 1557-1564. doi: 10.1080/14712598.2017.1387244

    [8]

    Stelljes M, Alakel N, Wäsch R, et al. Inotuzumab Ozogamicin Induction Followed By Standard Chemotherapy Yields High Remission Rates and Promising Survival in Older(> 55 Years)Patients with De Novo B-Lymphoblastic Leukemia(GMALL-Initial1 Trial)[J]. Blood, 2022, 140(Supplement 1): 510-512. doi: 10.1182/blood-2022-162235

    [9]

    Senapati J, Short N, Alvarado Y, et al. A Phase Ⅱ Study of Inotuzumab Ozogamicin for the Treatment of Measurable Residual Disease-Positive B-Cell Acute Lymphoblastic Leukemia[J]. Blood, 2022, 140(Supplement 1): 3253-3255. doi: 10.1182/blood-2022-170667

    [10]

    Jabbour EJ, Sasaki K, Ravandi F, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy(mini-HCVD)with or without blinatumomab versus standard intensive chemotherapy(HCVAD)as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia: A propensity score analysis[J]. Cancer, 2019, 125(15): 2579-2586. doi: 10.1002/cncr.32139

    [11]

    Maese LD, Pulsipher MA. Blinatumomab Conundrum in Low-Risk Relapsed B-Cell ALL[J]. J Clin Oncol, 2023, 41(25): 4087-4092. doi: 10.1200/JCO.23.00594

    [12]

    Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia[J]. N Engl J Med, 2017, 376(9): 836-847. doi: 10.1056/NEJMoa1609783

    [13]

    Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia[J]. Blood, 2018, 131(14): 1522-1531. doi: 10.1182/blood-2017-08-798322

    [14]

    Foà R, Bassan R, Vitale A, et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults[J]. N Engl J Med, 2020, 383(17): 1613-1623. doi: 10.1056/NEJMoa2016272

    [15]

    Ali H, Salhotra A, Stein AS, et al. Efficacy of blinatumomab for MRD relapse in ALL post allogenic HCT[J]. Leuk Res, 2021, 104: 106579. doi: 10.1016/j.leukres.2021.106579

    [16]

    Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to hematological malignancies with bispecific antibodies[J]. Blood, 2018, 131(1): 30-38. doi: 10.1182/blood-2017-06-741058

    [17]

    Liu D, Zhao J, Song Y, et al. Clinical trial update on bispecific antibodies, antibody-drug conjugates, and antibody-containing regimens for acute lymphoblastic leukemia[J]. J Hematol Oncol, 2019, 12(1): 15. doi: 10.1186/s13045-019-0703-z

    [18]

    Van Der Sluis IM, De Lorenzo P, Kotecha RS, et al. Blinatumomab Added to Chemotherapy in Infant Lymphoblastic Leukemia[J]. N Engl J Med, 2023, 388(17): 1572-1581. doi: 10.1056/NEJMoa2214171

    [19]

    Kobayashi T, Ubukawa K, Fujishima M, et al. Correlation between increased immune checkpoint molecule expression and refractoriness to blinatumomab evaluated by longitudinal T cell analysis[J]. Int J Hematol, 2021, 113(4): 600-605. doi: 10.1007/s12185-020-03047-w

    [20]

    Wunderlich M, Manning N, Sexton C, et al. PD-1 Inhibition Enhances Blinatumomab Response in a UCB/PDX Model of Relapsed Pediatric B-Cell Acute Lymphoblastic Leukemia[J]. Front Oncol, 2021, 11: 642466. doi: 10.3389/fonc.2021.642466

    [21]

    Duell J, Dittrich M, Bedke T, et al. Frequency of regulatory T cells determines the outcome of the T-cell-engaging antibody blinatumomab in patients with B-precursor ALL[J]. Leukemia, 2017, 31(10): 2181-2190. doi: 10.1038/leu.2017.41

    [22]

    Samra B, Jabbour E, Ravandi F, et al. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions[J]. J Hematol Oncol, 2020, 13(1): 70. doi: 10.1186/s13045-020-00905-2

    [23]

    Meckler JF, Levis DJ, Vang DP, et al. A Novel bispecific T-cell engager(BiTE)targeting CD22 and CD3 has both in vitro and in vivo activity and synergizes with blinatumomab in an acute lymphoblastic leukemia(ALL)tumor model[J]. Cancer Immunol Immunother, 2023, 72(9): 2939-2948. doi: 10.1007/s00262-023-03444-0

    [24]

    Martino M, Alati C, Canale FA, et al. A Review of Clinical Outcomes of CAR T-Cell Therapies for B-Acute Lymphoblastic Leukemia[J]. Int J Mol Sci, 2021, 22(4): 2150. doi: 10.3390/ijms22042150

    [25]

    Chen YJ, Abila B, Mostafa Kamel Y. CAR-T: What Is Next?[J]. Cancers(Basel), 2023, 15(3): 663.

    [26]

    Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia[J]. N Engl J Med, 2014, 371(16): 1507-1517. doi: 10.1056/NEJMoa1407222

    [27]

    Pan J, Niu Q, Deng B, et al. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia[J]. Leukemia, 2019, 33(12): 2854-2866. doi: 10.1038/s41375-019-0488-7

    [28]

    Spiegel JY, Patel S, Muffly L, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial[J]. Nat Med, 2021, 27(8): 1419-1431. doi: 10.1038/s41591-021-01436-0

    [29]

    Lejman M, Kuśmierczuk K, Bednarz K, et al. Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia-Therapy and Toxicity Mechanisms[J]. Int J Mol Sci, 2021, 22(18): 9827. doi: 10.3390/ijms22189827

    [30]

    Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies[J]. Cancer Cell, 2020, 37(4): 530-542. doi: 10.1016/j.ccell.2020.03.006

    [31]

    Jiang Q, Li Z, Qin Y, et al. Olverembatinib(HQP1351), a well-tolerated and effective tyrosine kinase inhibitor for patients with T315I-mutated chronic myeloid leukemia: results of an open-label, multicenter phase 1/2 trial[J]. J Hematol Oncol, 2022, 15(1): 113. doi: 10.1186/s13045-022-01334-z

    [32]

    Cao Q, Wu X, Zhang Q, et al. Mechanisms of action of the BCL-2 inhibitor venetoclax in multiple myeloma: a literature review[J]. Front Pharmacol, 2023, 14: 1291920. doi: 10.3389/fphar.2023.1291920

    [33]

    Brivio E, Baruchel A, Beishuizen A, et al. Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma[J]. Eur J Cancer, 2022, 164: 1-17. doi: 10.1016/j.ejca.2021.12.029

    [34]

    Venugopal S, Kantarjian H, Short NJ, et al. A Phase Ⅱ Study of Mini-Hyper-CVD Plus Venetoclax in Patients with Philadelphia Chromosome-Negative Acute Lymphoblastic Leukemia[J]. Blood, 2021, 138(Supplement 1): 1239. doi: 10.1182/blood-2021-153826

    [35]

    Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma[J]. Cancer Discov, 2021, 11(6): 1440-1453. doi: 10.1158/2159-8290.CD-20-1465

    [36]

    Blackmon AL, Hourigan CS. Test Then Erase? Current Status and Future Opportunities for Measurable Residual Disease Testing in Acute Myeloid Leukemia[J]. Acta Haematol, 2024, 147(2): 133-146. doi: 10.1159/000535463

    [37]

    Massimino M, Tirrò E, Stella S, et al. Targeting BCL-2 as a Therapeutic Strategy for Primary(p210) BCR-ABL1-positive B-ALL Cells[J]. In Vivo, 2020, 34(2): 511-516. doi: 10.21873/invivo.11802

    [38]

    Boudny M, Trbusek M. ATR-CHK1 pathway as a therapeutic target for acute and chronic leukemias[J]. Cancer Treat Rev, 2020, 88: 102026. doi: 10.1016/j.ctrv.2020.102026

    [39]

    Fischer U, Forster M, Rinaldi A, et al. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options[J]. Nat Genet, 2015, 47(9): 1020-1029. doi: 10.1038/ng.3362

    [40]

    Voruz S, Blum S, De Leval L, et al. Daratumumab and venetoclax in combination with chemotherapy provide sustained molecular remission in relapsed/refractory CD19, CD20, and CD22 negative acute B lymphoblastic leukemia with KMT2A-AFF1 transcript[J]. Biomark Res, 2021, 9(1): 92. doi: 10.1186/s40364-021-00343-3

    [41]

    Bai H, Zhang S Q, Lei H, et al. Menin-MLL protein-protein interaction inhibitors: a patent review(2014-2021)[J]. Expert Opin Ther Pat, 2022, 32(5): 507-522. doi: 10.1080/13543776.2022.2045947

    [42]

    Krivtsov AV, Evans K, Gadrey JY, et al. A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia[J]. Cancer Cell, 2019, 36(6): 660-673. e11. doi: 10.1016/j.ccell.2019.11.001

    [43]

    Dinardo KW, Leblanc TW, Chen H. Novel agents and regimens in acute myeloid leukemia: latest updates from 2022 ASH Annual Meeting[J]. J Hematol Oncol, 2023, 16(1): 17. doi: 10.1186/s13045-023-01411-x

    [44]

    Saleh K, Fernandez A, Pasquier F. Treatment of Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia in Adults[J]. Cancers(Basel), 2022, 14(7): 1805.

    [45]

    Song Y, Chen S, Liu C, et al. Chemo-free maintenance therapy in adult T-cell acute lymphoblastic leukemia: A case report and literature review[J]. Front Pharmacol, 2023, 14: 1051305. doi: 10.3389/fphar.2023.1051305

    [46]

    Jabbour E, Short NJ, Jain N, et al. Hyper-CVAD and sequential blinatumomab for newly diagnosed Philadelphia chromosome-negative B-cell acute lymphocytic leukaemia: a single-arm, single-centre, phase 2 trial[J]. Lancet Haematol, 2022, 9(12): e878-e885. doi: 10.1016/S2352-3026(22)00285-X

    [47]

    Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia[J]. Blood, 2015, 125(24): 3711-3719. doi: 10.1182/blood-2015-02-627935

    [48]

    Hoelzer D. Chemotherapy-free treatment—a new era in acute lymphoblastic leukemia?[J]. Mass Medical Soc, 2020, 383(17): 1673-1674.

    [49]

    王迎. 抗体治疗急性淋巴细胞白血病的临床应用[J]. 临床血液学杂志, 2022, 35(3): 155-158. doi: 10.13201/j.issn.1004-2806.2022.03.001

  • 加载中
计量
  • 文章访问数:  430
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2024-03-19
刊出日期:  2024-05-01

目录