成人核心结合因子相关急性髓系白血病遗传异质性及预后因素分析

贾西, 姚韵倩, 廖娜莹, 等. 成人核心结合因子相关急性髓系白血病遗传异质性及预后因素分析[J]. 临床血液学杂志, 2024, 37(5): 318-325. doi: 10.13201/j.issn.1004-2806.2024.05.007
引用本文: 贾西, 姚韵倩, 廖娜莹, 等. 成人核心结合因子相关急性髓系白血病遗传异质性及预后因素分析[J]. 临床血液学杂志, 2024, 37(5): 318-325. doi: 10.13201/j.issn.1004-2806.2024.05.007
JIA Xi, YAO Yunqian, LIAO Naying, et al. Genetic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication[J]. J Clin Hematol, 2024, 37(5): 318-325. doi: 10.13201/j.issn.1004-2806.2024.05.007
Citation: JIA Xi, YAO Yunqian, LIAO Naying, et al. Genetic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication[J]. J Clin Hematol, 2024, 37(5): 318-325. doi: 10.13201/j.issn.1004-2806.2024.05.007

成人核心结合因子相关急性髓系白血病遗传异质性及预后因素分析

  • 基金项目:
    国家自然科学基金(No: 82370152); 广东省自然科学基金(No: 2020A1515010406)
详细信息

Genetic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication

More Information
  • 目的 探讨成人核心结合因子急性髓系白血病(core-binding factor acute myeloid leukemia,CBF-AML)的遗传异质性及预后因素。方法 回顾性分析271例成人新诊断CBF-AML患者的临床资料,包括188例t(8;21) AML患者和83例inv(16)/t(16;16) AML患者。比较2组患者间分子遗传学差异,采用log-rank检验和Cox回归模型分析影响患者生存和复发的因素。结果 t(8;21) AML患者性染色体缺失(33.6% vs 1.5%,P<0.001)、CD19(58.9% vs 6.8%,P<0.001)和CD56表达(63.8% vs 1.7%,P<0.001)明显高于inv(16)/t(16;16) AML患者。+22在inv(16)/t(16;16) AML患者中明显高于t(8;21) AML患者(13.6% vs 0.7%,P<0.001)。 KIT 突变(51.8% vs 28.3%,P=0.010)、 EZH2突变 (18.8% vs 4.3%,P=0.022)在t(8;21) AML患者中的发生率明显高于inv(16)/t(16;16) AML患者。 FLT3 突变(34.8% vs 12.9%,P=0.003)和 WT1突变 (15.2% vs 4.7%,P=0.044)在inv(16)/t(16;16) AML患者中的发生率明显高于t(8;21) AML患者。对于t(8;21) AML患者, KIT D816 突变是影响总生存的独立危险因素(P=0.050),而异基因造血干细胞移植是影响总生存的独立保护因素(P=0.029)。初诊时骨髓高原始细胞数(P=0.043)、CD19不表达(P=0.008)是影响无事件生存的独立危险因素。 KIT D816 突变(P=0.014)、CD19不表达(P=0.036)是影响累计复发率的独立危险因素。对于inv(16)/t(16;16) AML患者,髓外浸润是影响无事件生存的独立危险因素(P=0.023),异基因造血干细胞移植是影响累计复发率(P=0.037)和无事件生存(P=0.015)的独立保护因素。结论 成人t(8;21)和inv(16)/t(16;16) AML患者具有显著的遗传学异质性。
  • 加载中
  • 图 1  t(8;21) AML和inv(16)/t(16;16) AML基因突变图谱

    图 2  t(8;21) AML和inv(16)/t(16;16) AML复发及生存分析

    表 1  CBF-AML患者的临床特征

    临床特征 所有患者
    (271例)
    t(8;21) AML
    (188例)
    inv(16)/t(16;16) AML
    (83例)
    P
    年龄/岁 34(26,45) 34(24,45) 34(27,46) 0.345
    男∶女/例 165∶106 108∶80 57∶26 0.081
    AML类型/例(%) 0.674
       原发AML 263(97.0) 183(97.3) 80(96.4)
       继发AML 8(3.0) 5(2.7) 3(3.6)
    白细胞计数/(×109/L) 15.42(7.13,37.91) 10.80(5.00,23.27) 50.00(22.38,103.60) <0.001
    骨髓原始细胞/% 46.91(30.50,64.00) 43.00(29.38,59.13) 55.44(38.00,70.00) 0.003
    CD19表达/例(%) 87(43.5) 83(58.9) 4(6.8) <0.001
    CD33表达/例(%) 168(84.0) 114(80.9) 54(91.5) 0.060
    CD56表达/例(%) 91(45.5) 90(63.8) 1(1.7) <0.001
    髓外浸润/例(%) 24(8.9) 19(10.1) 5(6.0) 0.276
    附加染色体异常/例(%) 89(42.6) 68(47.6) 21(31.8) 0.032
       X/Y性染色体缺失 49(23.4) 48(33.6) 1(1.5) <0.001
       +8染色体三体 5(2.4) 2(1.4) 3(4.5) 0.186
       +22染色体三体 10(4.8) 1(0.7) 9(13.6) <0.001
       9q/-9染色体缺失 7(3.3) 7(4.9) 0 0.020
       7q/-7染色体缺失 10(4.8) 8(5.6) 2(3.0) 0.401
       复杂核型 13(6.2) 8(5.6) 5(7.6) 0.587
    分子遗传学异常/例(%)
       TET2突变 61(46.6) 42(49.4) 19(41.3) 0.375
       KIT突变 57(43.5) 44(51.8) 13(28.3) 0.010
          KIT exon 8突变 5(3.8) 3(3.5) 2(4.3) 0.817
          KITexon 17突变 50(38.2) 40(47.1) 10(21.7) 0.004
       FLT3突变 27(20.6) 11(12.9) 16(34.8) 0.003
          FLT3-ITD突变 12(9.2) 6(7.1) 6(13.0) 0.267
          FLT3-TKD突变 12(9.2) 5(5.9) 7(15.2) 0.085
       ASXL1突变 19(14.6) 12(14.1) 7(15.6) 0.825
       EZH2突变 18(13.7) 16(18.8) 2(4.3) 0.022
       NRAS突变 17(13.0) 7(8.2) 10(21.7) 0.028
       TET1突变 15(11.5) 10(11.8) 5(10.9) 0.878
       WT1突变 11(8.4) 4(4.7) 7(15.2) 0.044
    缓解后治疗方式/例(%)
       化疗 88(34.0) 61(34.1) 27(33.8) 0.959
       自体造血干细胞移植 43(16.6) 23(12.8) 20(25.0) 0.015
       异基因造血干细胞移植 128(49.4) 95(53.1) 33(41.2) 0.079
    下载: 导出CSV

    表 2  t(8;21) AML患者预后多因素分析

    相关因素 OS CIR EFS
    HR(95%CI) P HR(95%CI) P HR(95%CI) P
    白细胞计数≥15.42×109/L - - - - 2.85(0.05~5.67) 0.290
    骨髓原始细胞≥46.91% 2.30(0.89~5.98) 0.085 - - 2.57(1.05~3.56) 0.043
    KIT D816突变 2.56(1.00~6.61) 0.050 5.75(1.43~23.15) 0.014 1.01(0.08~13.19) 0.994
    CD19表达 - - 0.33(0.11~0.93) 0.036 0.15(0.03~0.62) 0.008
    2个疗程后达CR 2.64(0.83~8.33) 0.098 1.69(0.30~9.54) 0.552 0.01(0~2.78) 0.112
    3个疗程后融合基因水平<0.1% - - 0.33(0.08~1.40) 0.132 0.48(0~24.316) 0.714
    异基因造血干细胞移植 0.35(0.14~0.90) 0.029 0.64(0.12~3.42) 0.601 0.15(0.01~1.78) 0.131
    下载: 导出CSV

    表 3  inv(16)/t(16;16) AML患者预后多因素分析

    相关因素 OS CIR EFS
    HR(95%CI) P HR(95%CI) P HR(95%CI) P
    白细胞计数≥15.42×109/L - - 3.68(0.83~16.45) 0.088 - -
    髓外浸润 0.88(0.35~2.46) 0.989 2.62(0.73~9.43) 0.141 3.52(1.19~10.44) 0.023
    FLT3-ITD突变 2.37(0.48~11.76) 0.290 - - - -
    3个疗程后融合基因水平<0.1% 0.48(0.12~1.96) 0.310 - - - -
    异基因造血干细胞移植 0.38(0.09~1.55) 0.178 0.37(0.15~0.94) 0.037 0.38(0.18~0.83) 0.015
    下载: 导出CSV
  • [1]

    Al-Harbi S, Aljurf M, Mohty M, et al. An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1[J]. Blood Adv, 2020, 4(1): 229-238. doi: 10.1182/bloodadvances.2019000168

    [2]

    Jahn N, Terzer T, Sträng E, et al. Genomic heterogeneity in core-binding factor acute myeloid leukemia and its clinical implication[J]. Blood Adv, 2020, 4(24): 6342-6352. doi: 10.1182/bloodadvances.2020002673

    [3]

    Cher CY, Leung GM, Au CH, et al. Next-generation sequencing with a myeloid gene panel in core-binding factor AML showed KIT activation loop and TET2 mutations predictive of outcome[J]. Blood Cancer J, 2016, 6(7): e442. doi: 10.1038/bcj.2016.51

    [4]

    Park S, Choi H, Kim HJ, et al. Genome-wide genotype-based risk model for survival in core binding factor acute myeloid leukemia patients[J]. Ann Hematol, 2018, 97(6): 955-965. doi: 10.1007/s00277-018-3260-6

    [5]

    Mosna F, Papayannidis C, Martinelli G, et al. Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up[J]. Am J Hematol, 2015, 90(6): 515-523. doi: 10.1002/ajh.24000

    [6]

    Yu S, Lin T, Nie D, et al. Dynamic assessment of measurable residual disease in favorable-risk acute myeloid leukemia in first remission, treatment, and outcomes[J]. Blood Cancer J, 2021, 11(12): 195. doi: 10.1038/s41408-021-00591-4

    [7]

    Xu L, Chen H, Chen J, et al. The consensus on indications, conditioning regimen, and donor selection of allogeneic hematopoietic cell transplantation for hematological diseases in China-recommendations from the Chinese Society of Hematology[J]. J Hematol Oncol, 2018, 11(1): 33. doi: 10.1186/s13045-018-0564-x

    [8]

    Döhner H, Wei AH, Appelbaum FR, et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN[J]. Blood, 2022, 140(12): 1345-1377. doi: 10.1182/blood.2022016867

    [9]

    Shang L, Chen X, Liu Y, et al. The immunophenotypic characteristics and flow cytometric scoring system of acute myeloid leukemia with t(8;21)(q22;q22);RUNX1-RUNX1T1[J]. Int J Lab Hematol, 2019, 41(1): 23-31. doi: 10.1111/ijlh.12916

    [10]

    Walter K, Cockerill PN, Barlow R, et al. Aberrant expression of CD19 in AML with t(8;21) involves a poised chromatin structure and PAX5[J]. Oncogene, 2010, 29(20): 2927-2937. doi: 10.1038/onc.2010.56

    [11]

    Iriyama N, Hatta Y, Takeuchi J, et al. CD56 expression is an independent prognostic factor for relapse in acute myeloid leukemia with t(8;21)[J]. Leuk Res, 2013, 37(9): 1021-1026. doi: 10.1016/j.leukres.2013.05.002

    [12]

    Wang B, Yang B, Ling Y, et al. Role of CD19 and specific KIT-D816 on risk stratification refinement in t(8;21) acute myeloid leukemia induced with different cytarabine intensities[J]. Cancer Med, 2021, 10(3): 1091-1102. doi: 10.1002/cam4.3705

    [13]

    Sakamoto K, Shiba N, Deguchi T, et al. Negative CD19 expression is associated with inferior relapse-free survival in children with RUNX1-RUNX1T1-positive acute myeloid leukaemia: results from the Japanese Paediatric Leukaemia/Lymphoma Study Group AML-05 study[J]. Br J Haematol, 2019, 187(3): 372-376. doi: 10.1111/bjh.16080

    [14]

    Hsiao HH, Liu YC, Wang HC, et al. Additional chromosomal abnormalities in core-binding factor acute myeloid leukemia[J]. Genet Mol Res, 2015, 14(4): 17028-17033. doi: 10.4238/2015.December.16.3

    [15]

    Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup[J]. J Clin Oncol, 2004, 22(18): 3741-3750. doi: 10.1200/JCO.2004.03.012

    [16]

    Krauth MT, Eder C, Alpermann T, et al. High number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcome[J]. Leukemia, 2014, 28(7): 1449-1458. doi: 10.1038/leu.2014.4

    [17]

    Wang YY, Zhao LJ, Wu CF, et al. C-KIT mutation cooperates with full-length AML1-ETO to induce acute myeloid leukemia in mice[J]. Proc Natl Acad Sci U S A, 2011, 108(6): 2450-2455. doi: 10.1073/pnas.1019625108

    [18]

    Duployez N, Marceau-Renaut A, Boissel N, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia[J]. Blood, 2016, 127(20): 2451-2459. doi: 10.1182/blood-2015-12-688705

    [19]

    Opatz S, Bamopoulos SA, Metzeler KH, et al. The clinical mutatome of core binding factor leukemia[J]. Leukemia, 2020, 34(6): 1553-1562. doi: 10.1038/s41375-019-0697-0

    [20]

    Faber ZJ, Chen X, Gedman AL, et al. The genomic landscape of core-binding factor acute myeloid leukemias[J]. Nat Genet, 2016, 48(12): 1551-1556. doi: 10.1038/ng.3709

    [21]

    吴天梅, 薛胜利, 李正, 等. KIT及其他克隆性基因突变对核心结合因子相关急性髓系白血病的预后价值[J]. 中华血液学杂志, 2021, 42(8): 646-653.

    [22]

    Ayatollahi H, Shajiei A, Sadeghian MH, et al. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review[J]. Hematol Oncol Stem Cell Ther, 2017, 10(1): 1-7. doi: 10.1016/j.hemonc.2016.08.005

    [23]

    Badr P, Elsayed GM, Eldin DN, et al. Detection of KIT mutations in core binding factor acute myeloid leukemia[J]. Leuk Res Rep, 2018, 10: 20-25.

    [24]

    中华医学会血液学分会白血病淋巴瘤学组. 中国成人急性髓系白血病(非急性早幼粒细胞白血病)诊疗指南(2021年版)[J]. 中华血液学杂志, 2021, 42(8): 617-623.

    [25]

    Ishikawa Y, Kawashima N, Atsuta Y, et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11[J]. Blood Adv, 2020, 4(1): 66-75. doi: 10.1182/bloodadvances.2019000709

    [26]

    Yui S, Kurosawa S, Yamaguchi H, et al. D816 mutation of the KIT gene in core binding factor acute myeloid leukemia is associated with poorer prognosis than other KIT gene mutations[J]. Ann Hematol, 2017, 96(10): 1641-1652. doi: 10.1007/s00277-017-3074-y

    [27]

    Ishikawa Y, Kawashima N, Atsuta Y, et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11[J]. Blood Adv, 2020, 4(1): 66-75. doi: 10.1182/bloodadvances.2019000709

    [28]

    Schessl C, Rawat VP, Cusan M, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice[J]. J Clin Invest, 2005, 115(8): 2159-2168. doi: 10.1172/JCI24225

    [29]

    Kim HG, Kojima K, Swindle CS, et al. FLT3-ITD cooperates with inv(16) to promote progression to acute myeloid leukemia[J]. Blood, 2008, 111(3): 1567-1574. doi: 10.1182/blood-2006-06-030312

    [30]

    Paschka P, Du J, Schlenk RF, et al. Secondary genetic lesions in acute myeloid leukemia with inv(16) or t(16;16): a study of the German-Austrian AML Study Group(AMLSG)[J]. Blood, 2013, 121(1): 170-177. doi: 10.1182/blood-2012-05-431486

    [31]

    Kayser S, Kramer M, Martínez-Cuadrón D, et al. Characteristics and outcome of patients with core-binding factor acute myeloid leukemia and FLT3-ITD: results from an international collaborative study[J]. Haematologica, 2022, 107(4): 836-843.

  • 加载中

(2)

(3)

计量
  • 文章访问数:  358
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2024-03-19
刊出日期:  2024-05-01

目录