CS1-BCMA双靶CAR-T细胞治疗多发性骨髓瘤的研究进展

胡豫, 梅恒, 李成功. CS1-BCMA双靶CAR-T细胞治疗多发性骨髓瘤的研究进展[J]. 临床血液学杂志, 2024, 37(7): 446-452. doi: 10.13201/j.issn.1004-2806.2024.07.002
引用本文: 胡豫, 梅恒, 李成功. CS1-BCMA双靶CAR-T细胞治疗多发性骨髓瘤的研究进展[J]. 临床血液学杂志, 2024, 37(7): 446-452. doi: 10.13201/j.issn.1004-2806.2024.07.002
HU Yu, MEI Heng, LI Chenggong. Research advance of CS1-BCMA bispecific CAR-T cell therapy in multiple myeloma[J]. J Clin Hematol, 2024, 37(7): 446-452. doi: 10.13201/j.issn.1004-2806.2024.07.002
Citation: HU Yu, MEI Heng, LI Chenggong. Research advance of CS1-BCMA bispecific CAR-T cell therapy in multiple myeloma[J]. J Clin Hematol, 2024, 37(7): 446-452. doi: 10.13201/j.issn.1004-2806.2024.07.002

CS1-BCMA双靶CAR-T细胞治疗多发性骨髓瘤的研究进展

详细信息
    作者简介:

    胡豫,医学博士、教授、主任医师、博士生导师,华中科技大学同济医学院附属协和医院院长,教育部生物靶向治疗重点实验室主任,华中科技大学血液病学研究所所长。国家杰出青年科学基金获得者、国家科技进步二等奖获得者、全国创新争先奖章获得者、“长江学者”特聘教授、全国教书育人楷模获得者、全国优秀医院院长获得者、何梁何利基金奖获得者、中国医院管理突出贡献奖获得者。担任中华医学会血液学分会候任主委、中华医学会内科学分会副主委、中国医师协会血液科医师分会副会长、中国医院协会副会长、中国病理生理学会实验血液学会副主委、国际血栓与止血学会教育委员会委员。担任本专业国际刊物Thrombosis ResearchThrombosis and Haemostasis副主编,《临床内科杂志》《临床血液学杂志》《临床急诊杂志》主编、《中华血液学杂志》《中国医院管理》副主编、《中华医院管理杂志》编委等。从事血液病医疗工作30余年,主持临床一线工作。在各种疑难血液病的临床诊治方面具有丰富经验,特别是对出凝血疾病如难治免疫性血小板减少症、易栓症,恶性血液疾病如多发性骨髓瘤等方面具有较深造诣

    通讯作者: 胡豫,E-mail:dr_huyu@126.com
  • 中图分类号: R733.3

Research advance of CS1-BCMA bispecific CAR-T cell therapy in multiple myeloma

More Information
  • 在难治/复发多发性骨髓瘤(refractory/relapsed multiple myeloma,RRMM)中,嵌合抗原受体T细胞(chimeric antigen receptor-T,CAR-T)治疗代表了一项重大的科学进步,对许多患者来说,具有高反应率和长期缓解。尽管如此,肿瘤细胞表面靶抗原下调可导致反应较差和疾病复发。目前获批用于治疗RRMM的CAR-T细胞疗法仅针对B细胞成熟抗原(B cell maturation antigen,BCMA)。虽然BCMA-CAR-T细胞治疗的反应率高,但其对靶抗原的选择性压力可引起BCMA表达丢失和MM细胞逃逸。双靶CAR-T细胞理论上具有靶向性更广和减轻单靶逃逸的优势。BCMA和CS1在MM细胞上高表达,被认为是MM免疫治疗的理想靶点。文章总结了商品化BCMA-CAR-T细胞治疗RRMM和CS1-CAR-T细胞治疗MM的研究进展,并重点讨论了CS1-BCMA CAR-T细胞治疗的早期试验结果。
  • 加载中
  • 表 1  CS1-CAR-T和CS1-BCMA CAR-T细胞治疗MM的研究进展

    CS1-CAR设计 载体 T细胞 体外研究 体内研究 靶向脱靶毒性 参考文献
    CS1 scFv来自杂交瘤细胞,CD28为共刺激结构域,CD3ζ为胞内区 Pinco
    逆转录
    病毒
    健康供者
    T细胞
    NCI-H929, IM9,
    MM.1S,RPMI-8226,
    原代MM细胞
    MM.1S和IM9
    小鼠模型
    未评估 [27]
    靶向CS1远端可变区的Luc90-scFv,CD28和4-1BB为共刺激结构域,CD3ζ为胞内区 慢病毒 健康供者
    T细胞
    MM.1S,CS1-KD
    MM.1S,原代MM
    细胞
    MM.1S和OPM2
    小鼠模型
    CD8+CAR-T
    细胞自绞杀,
    敲除CS1可缓解
    [28]
    Luc63-scFv,CD28为共刺激结构域,CD3ζ为胞内区 epHIV7
    慢病毒
    健康供者
    T细胞
    NCI-H929,OPM2,
    MM.1S,CS1-K562,
    原代MM细胞
    MM.1s小鼠模型 选择性杀伤
    CS1+/high淋巴
    细胞
    [29]
    Luc90-scFv和Luc63-scFv,CD28为共刺激结构域,CD3ζ为胞内区,iCasp9自杀基因 Gamma
    逆转录
    病毒
    健康供者
    T细胞
    CS1-RPMI-8226,
    CS1-K562,MM.1S,
    原代MM细胞
    MM.1S的局部肿瘤
    和全身肿瘤小鼠模型
    CD8+CAR-T
    细胞自绞杀,
    不影响CAR-T
    细胞扩增
    [30]
    靶向CS1的scFv,CD28为共刺激结构域,CD3ζζ为胞内区 pHIV7
    慢病毒
    健康供者
    T细胞
    KG1a,MM.1R,
    MM.1S,U266B,
    LCL OKT3
    MM.1S小鼠模型 未评估 [31]
    靶向CS1的scFv 未报道 TALEN技
    术敲除健康
    供者T细胞
    的TRAC和
    CS1基因
    MM.1S,原代MM
    细胞
    原代MM细胞的
    PDX小鼠模型
    对外周血单个
    核细胞和造血
    干细胞无杀伤
    [32]
    靶向CS1的scFv 未报道 TALEN技
    术敲除健康
    供者T细胞
    的TRAC和
    CS1基因
    MM.1S,L363,UM9,
    U266,原代MM细胞
    MM小鼠模型 未评估 [33]
    BCMA-scFv-4-1BB-CD3ζ和CS1-scFv-4-1BB-CD3ζ以P2A连接 慢病毒 健康供者
    T细胞
    MM.1S,RPMI-8226,
    U266,原代MM细胞
    MM.1S小鼠模型,
    K562-CS1和
    K562-BCMA混合
    和单独小鼠模型
    未评估 [34]
    Luc63-scFv-cBCMA-scFv(11D5.3),4-1BB为共刺激结构域,CD3ζ为胞内区 逆转录
    病毒
    健康供者
    T细胞
    BCMA+/CS1-MM.1S,
    BCMA-/CS1+MM.1S,
    BCMA+/CS1+MM.1S
    BCMA+/CS1+
    BCMA+/CS1-
    BCMA-/CS1+MM.1S
    1∶1∶1小鼠模型
    对CD8+
    T细胞无杀伤
    [35]
    CS1-scFv(7A8D5)-BCMA-scFv,4-1BB为共刺激结构域,CD3ζ为胞内区 慢病毒 健康供者
    T细胞
    MM.1S,CHO-BCMA,
    CHO-CS1
    MM.1S小鼠模型 未评估 [36]
    下载: 导出CSV
  • [1]

    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492

    [2]

    Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies[J]. Blood, 2008, 111(5): 2516-2520. doi: 10.1182/blood-2007-10-116129

    [3]

    Turesson I, Velez R, Kristinsson SY, et al. Patterns of improved survival in patients with multiple myeloma in the twenty-first century: a population-based study[J]. J Clin Oncol, 2010, 28(5): 830-834. doi: 10.1200/JCO.2009.25.4177

    [4]

    Ozaki S, Harada T, Saitoh T, et al. Survival of multiple myeloma patients aged 65-70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network[J]. Acta Haematol, 2014, 132(2): 211-219. doi: 10.1159/000357394

    [5]

    O'Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells[J]. J Exp Med, 2004, 199(1): 91-98. doi: 10.1084/jem.20031330

    [6]

    Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma[J]. Clin Cancer Res, 2013, 19(8): 2048-2060. doi: 10.1158/1078-0432.CCR-12-2422

    [7]

    Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma[J]. J Clin Oncol, 2018, 36(22): 2267-2280. doi: 10.1200/JCO.2018.77.8084

    [8]

    Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma[J]. J Clin Invest, 2019, 129(6): 2210-2221. doi: 10.1172/JCI126397

    [9]

    Green DJ, Pont M, Sather BD, et al. Fully human bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma[J]. Blood, 2018, 132: 1011. doi: 10.1182/blood-2018-99-117729

    [10]

    Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma[J]. Clin Cancer Res, 2008, 14(9): 2775-2784. doi: 10.1158/1078-0432.CCR-07-4246

    [11]

    Tai YT, Soydan E, Song WH, et al. CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells[J]. Blood, 2009, 113(18): 4309-4318. doi: 10.1182/blood-2008-10-183772

    [12]

    Tai YT, Dillon M, Song WH, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu[J]. Blood, 2008, 112(4): 1329-1337. doi: 10.1182/blood-2007-08-107292

    [13]

    Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma[J]. N Engl J Med, 2015, 373(7): 621-631. doi: 10.1056/NEJMoa1505654

    [14]

    Da Vià MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR-T cells in a patient with multiple myeloma[J]. Nat Med, 2021, 27(4): 616-619. doi: 10.1038/s41591-021-01245-5

    [15]

    Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma[J]. N Engl J Med, 2019, 380(18): 1726-1737. doi: 10.1056/NEJMoa1817226

    [16]

    Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma[J]. N Engl J Med, 2021, 384(8): 705-716. doi: 10.1056/NEJMoa2024850

    [17]

    Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma[J]. J Hematol Oncol, 2018, 11(1): 141. doi: 10.1186/s13045-018-0681-6

    [18]

    Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma[J]. Proc Natl Acad Sci USA, 2019, 116(19): 9543-9551. doi: 10.1073/pnas.1819745116

    [19]

    Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma(CARTITUDE-1): a phase 1b/2 open-label study[J]. Lancet, 2021, 398(10297): 314-324. doi: 10.1016/S0140-6736(21)00933-8

    [20]

    Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up[J]. J Clin Oncol, 2023, 41(6): 1265-1274. doi: 10.1200/JCO.22.00842

    [21]

    Mi JQ, Zhao WH, Jing HM, et al. Phase Ⅱ, open-label study of ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor-T-cell therapy, in Chinese patients with relapsed/refractory multiple myeloma(CARTIFAN-1)[J]. J Clin Oncol, 2023, 41(6): 1275-1284. doi: 10.1200/JCO.22.00690

    [22]

    Wang D, Wang J, Hu G, et al. A phase 1 study of a novel fully human BCMA-targeting CAR(CT103A)in patients with relapsed/refractory multiple myeloma[J]. Blood, 2021, 137(21): 2890-2901. doi: 10.1182/blood.2020008936

    [23]

    Li C, Wang D, Fang B, et al. Updated Results of Fumanba-1: A Phase 1b/2 Study of a Novel Fully Human B-Cell Maturation Antigen-Specific CAR T Cells(CT103A)in Patients with Relapsed and/or Refractory Multiple Myeloma[J]. Blood, 2022, 140(Suppl 1): 7435-7436.

    [24]

    Yang M, Zhang WH, Yu K, et al. A novel BCMA CAR-T-cell therapy with optimized human scFv for treatment of relapsed/refractory multiple myeloma: results from phase Ⅰ clinical trials[J]. Haematologica, 2022, 107(8): 1960-1965. doi: 10.3324/haematol.2022.280629

    [25]

    Chen WM, Fu CC, Fang BJ, et al. Phase Ⅱ study of fully human BCMA-targeting CAR-T cells(zevorcabtagene autoleucel)in patients with relapsed/refractory multiple myeloma[J]. Blood, 2022, 140(Supplement 1): 4564-4565. doi: 10.1182/blood-2022-168610

    [26]

    Kumar SK, Baz RC, Orlowski RZ, et al. Results from lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells(CT053) in patients with relapsed and/or refractory multiple myeloma[J]. Blood, 2020, 136: 28-29.

    [27]

    Chu JH, He S, Deng YC, et al. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells[J]. Clin Cancer Res, 2014, 20(15): 3989-4000. doi: 10.1158/1078-0432.CCR-13-2510

    [28]

    O'Neal J, Ritchey JK, Cooper ML, et al. CS1 CAR-T targeting the distal domain of CS1(SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells[J]. Leukemia, 2022, 36(6): 1625-1634. doi: 10.1038/s41375-022-01559-4

    [29]

    Gogishvili T, Danhof S, Prommersberger S, et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+normal lymphocytes[J]. Blood, 2017, 130(26): 2838-2847. doi: 10.1182/blood-2017-04-778423

    [30]

    Amatya C, Pegues MA, Lam N, et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule F7[J]. Mol Ther, 2021, 29(2): 702-717. doi: 10.1016/j.ymthe.2020.10.008

    [31]

    Wang XL, Walter M, Urak R, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma[J]. Clin Cancer Res, 2018, 24(1): 106-119. doi: 10.1158/1078-0432.CCR-17-0344

    [32]

    Mathur R, Zhang Z, He J, et al. Universal SLAMF7-Specific CAR T-Cells As Treatment for Multiple Myeloma[J]. Blood, 2017, 130(Suppl 1): 502-502.

    [33]

    Korst CLBM, Bruins WSC, Cosovic M, et al. Preclinical Activity of Allogeneic CS1-Specific CAR T-Cells(UCARTCS1) in Multiple Myeloma[J]. Blood, 2022, 140(Suppl 1): 4215-4216.

    [34]

    Chen KH, Wada M, Pinz KG, et al. A compound chimeric antigen receptor strategy for targeting multiple myeloma[J]. Leukemia, 2018, 32(2): 402-412. doi: 10.1038/leu.2017.302

    [35]

    Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma[J]. Nat Commun, 2020, 11(1): 2283. doi: 10.1038/s41467-020-16160-5

    [36]

    Golubovskaya V, Zhou H, Li F, et al. Novel CS1 CAR-T cells and bispecific CS1-BCMA CAR-T cells effectively target multiple myeloma[J]. Biomedicines, 2021, 9(10): 1422. doi: 10.3390/biomedicines9101422

    [37]

    Berahovich R, Zhou H, Xu S, et al. CAR-T cells based on novel BCMA monoclonal antibody block multiple myeloma cell growth[J]. Cancers(Basel), 2018, 10(9): 323.

    [38]

    Li CG, Xu J, Luo WJ, et al. Bispecific CS1-BCMA CAR-T cells are clinically active in relapsed or refractory multiple myeloma[J]. Leukemia, 2024, 38(1): 149-159. doi: 10.1038/s41375-023-02065-x

    [39]

    Dimopoulos MA, Moulopoulos LA, Maniatis A, et al. Solitary plasmacytoma of bone and asymptomatic multiple myeloma[J]. Blood, 2000, 96(6): 2037-2044. doi: 10.1182/blood.V96.6.2037

    [40]

    Finsinger P, Grammatico S, Chisini M, et al. Clinical features and prognostic factors in solitary plasmacytoma[J]. Br J Haematol, 2016, 172(4): 554-560. doi: 10.1111/bjh.13870

    [41]

    Hu XY, Li J, Fu MR, et al. The JAK/STAT signaling pathway: from bench to clinic[J]. Signal Transduct Target Ther, 2021, 6(1): 402. doi: 10.1038/s41392-021-00791-1

    [42]

    van Andel H, Kocemba KA, Spaargaren M, et al. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options[J]. Leukemia, 2019, 33(5): 1063-1075. doi: 10.1038/s41375-019-0404-1

  • 加载中
计量
  • 文章访问数:  330
  • 施引文献:  0
出版历程
收稿日期:  2024-06-04
刊出日期:  2024-07-01

返回顶部

目录