-
摘要: 在难治/复发多发性骨髓瘤(refractory/relapsed multiple myeloma,RRMM)中,嵌合抗原受体T细胞(chimeric antigen receptor-T,CAR-T)治疗代表了一项重大的科学进步,对许多患者来说,具有高反应率和长期缓解。尽管如此,肿瘤细胞表面靶抗原下调可导致反应较差和疾病复发。目前获批用于治疗RRMM的CAR-T细胞疗法仅针对B细胞成熟抗原(B cell maturation antigen,BCMA)。虽然BCMA-CAR-T细胞治疗的反应率高,但其对靶抗原的选择性压力可引起BCMA表达丢失和MM细胞逃逸。双靶CAR-T细胞理论上具有靶向性更广和减轻单靶逃逸的优势。BCMA和CS1在MM细胞上高表达,被认为是MM免疫治疗的理想靶点。文章总结了商品化BCMA-CAR-T细胞治疗RRMM和CS1-CAR-T细胞治疗MM的研究进展,并重点讨论了CS1-BCMA CAR-T细胞治疗的早期试验结果。
-
关键词:
- 多发性骨髓瘤 /
- 嵌合抗原受体T细胞治疗 /
- B细胞成熟抗原 /
- CS1 /
- 双靶
Abstract: In refractory/relapsed multiple myeloma(RRMM), chimeric antigen receptor-T(CAR-T) cell therapy represents a significant scientific advancement, with high response rates and long-term remission for many patients. However, target antigen downregulation on tumor cells can lead to poor response and disease recurrence. Currently, CAR-T cell therapy approved for the treatment of RRMM only targets B cell maturation antigen(BCMA). Although BCMA-CAR-T cell therapy has a high response rate, its selective pressure on target antigens can cause BCMA loss and MM escape. Bispecific CAR-T cells theoretically have the advantages of broader targeting and less single-target escape. BCMA and CS1 are highly expressed on MM cells and are considered ideal targets for MM immunotherapy. This review summarizes the research progress of commercial BCMA-CAR-T cell therapy for RRMM and CS1-CAR-T cell therapy for MM and focuses on the primary results of CS1-BCMA CAR-T cells. -
-
表 1 CS1-CAR-T和CS1-BCMA CAR-T细胞治疗MM的研究进展
CS1-CAR设计 载体 T细胞 体外研究 体内研究 靶向脱靶毒性 参考文献 CS1 scFv来自杂交瘤细胞,CD28为共刺激结构域,CD3ζ为胞内区 Pinco
逆转录
病毒健康供者
T细胞NCI-H929, IM9,
MM.1S,RPMI-8226,
原代MM细胞MM.1S和IM9
小鼠模型未评估 [27] 靶向CS1远端可变区的Luc90-scFv,CD28和4-1BB为共刺激结构域,CD3ζ为胞内区 慢病毒 健康供者
T细胞MM.1S,CS1-KD
MM.1S,原代MM
细胞MM.1S和OPM2
小鼠模型CD8+CAR-T
细胞自绞杀,
敲除CS1可缓解[28] Luc63-scFv,CD28为共刺激结构域,CD3ζ为胞内区 epHIV7
慢病毒健康供者
T细胞NCI-H929,OPM2,
MM.1S,CS1-K562,
原代MM细胞MM.1s小鼠模型 选择性杀伤
CS1+/high淋巴
细胞[29] Luc90-scFv和Luc63-scFv,CD28为共刺激结构域,CD3ζ为胞内区,iCasp9自杀基因 Gamma
逆转录
病毒健康供者
T细胞CS1-RPMI-8226,
CS1-K562,MM.1S,
原代MM细胞MM.1S的局部肿瘤
和全身肿瘤小鼠模型CD8+CAR-T
细胞自绞杀,
不影响CAR-T
细胞扩增[30] 靶向CS1的scFv,CD28为共刺激结构域,CD3ζζ为胞内区 pHIV7
慢病毒健康供者
T细胞KG1a,MM.1R,
MM.1S,U266B,
LCL OKT3MM.1S小鼠模型 未评估 [31] 靶向CS1的scFv 未报道 TALEN技
术敲除健康
供者T细胞
的TRAC和
CS1基因MM.1S,原代MM
细胞原代MM细胞的
PDX小鼠模型对外周血单个
核细胞和造血
干细胞无杀伤[32] 靶向CS1的scFv 未报道 TALEN技
术敲除健康
供者T细胞
的TRAC和
CS1基因MM.1S,L363,UM9,
U266,原代MM细胞MM小鼠模型 未评估 [33] BCMA-scFv-4-1BB-CD3ζ和CS1-scFv-4-1BB-CD3ζ以P2A连接 慢病毒 健康供者
T细胞MM.1S,RPMI-8226,
U266,原代MM细胞MM.1S小鼠模型,
K562-CS1和
K562-BCMA混合
和单独小鼠模型未评估 [34] Luc63-scFv-cBCMA-scFv(11D5.3),4-1BB为共刺激结构域,CD3ζ为胞内区 逆转录
病毒健康供者
T细胞BCMA+/CS1-MM.1S,
BCMA-/CS1+MM.1S,
BCMA+/CS1+MM.1SBCMA+/CS1+,
BCMA+/CS1-和
BCMA-/CS1+MM.1S
1∶1∶1小鼠模型对CD8+
T细胞无杀伤[35] CS1-scFv(7A8D5)-BCMA-scFv,4-1BB为共刺激结构域,CD3ζ为胞内区 慢病毒 健康供者
T细胞MM.1S,CHO-BCMA,
CHO-CS1MM.1S小鼠模型 未评估 [36] -
[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
[2] Kumar SK, Rajkumar SV, Dispenzieri A, et al. Improved survival in multiple myeloma and the impact of novel therapies[J]. Blood, 2008, 111(5): 2516-2520. doi: 10.1182/blood-2007-10-116129
[3] Turesson I, Velez R, Kristinsson SY, et al. Patterns of improved survival in patients with multiple myeloma in the twenty-first century: a population-based study[J]. J Clin Oncol, 2010, 28(5): 830-834. doi: 10.1200/JCO.2009.25.4177
[4] Ozaki S, Harada T, Saitoh T, et al. Survival of multiple myeloma patients aged 65-70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network[J]. Acta Haematol, 2014, 132(2): 211-219. doi: 10.1159/000357394
[5] O'Connor BP, Raman VS, Erickson LD, et al. BCMA is essential for the survival of long-lived bone marrow plasma cells[J]. J Exp Med, 2004, 199(1): 91-98. doi: 10.1084/jem.20031330
[6] Carpenter RO, Evbuomwan MO, Pittaluga S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma[J]. Clin Cancer Res, 2013, 19(8): 2048-2060. doi: 10.1158/1078-0432.CCR-12-2422
[7] Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma[J]. J Clin Oncol, 2018, 36(22): 2267-2280. doi: 10.1200/JCO.2018.77.8084
[8] Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma[J]. J Clin Invest, 2019, 129(6): 2210-2221. doi: 10.1172/JCI126397
[9] Green DJ, Pont M, Sather BD, et al. Fully human bcma targeted chimeric antigen receptor T cells administered in a defined composition demonstrate potency at low doses in advanced stage high risk multiple myeloma[J]. Blood, 2018, 132: 1011. doi: 10.1182/blood-2018-99-117729
[10] Hsi ED, Steinle R, Balasa B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma[J]. Clin Cancer Res, 2008, 14(9): 2775-2784. doi: 10.1158/1078-0432.CCR-07-4246
[11] Tai YT, Soydan E, Song WH, et al. CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf-mediated interactions with bone marrow stromal cells[J]. Blood, 2009, 113(18): 4309-4318. doi: 10.1182/blood-2008-10-183772
[12] Tai YT, Dillon M, Song WH, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu[J]. Blood, 2008, 112(4): 1329-1337. doi: 10.1182/blood-2007-08-107292
[13] Lonial S, Dimopoulos M, Palumbo A, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma[J]. N Engl J Med, 2015, 373(7): 621-631. doi: 10.1056/NEJMoa1505654
[14] Da Vià MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR-T cells in a patient with multiple myeloma[J]. Nat Med, 2021, 27(4): 616-619. doi: 10.1038/s41591-021-01245-5
[15] Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma[J]. N Engl J Med, 2019, 380(18): 1726-1737. doi: 10.1056/NEJMoa1817226
[16] Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma[J]. N Engl J Med, 2021, 384(8): 705-716. doi: 10.1056/NEJMoa2024850
[17] Zhao WH, Liu J, Wang BY, et al. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma[J]. J Hematol Oncol, 2018, 11(1): 141. doi: 10.1186/s13045-018-0681-6
[18] Xu J, Chen LJ, Yang SS, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma[J]. Proc Natl Acad Sci USA, 2019, 116(19): 9543-9551. doi: 10.1073/pnas.1819745116
[19] Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma(CARTITUDE-1): a phase 1b/2 open-label study[J]. Lancet, 2021, 398(10297): 314-324. doi: 10.1016/S0140-6736(21)00933-8
[20] Martin T, Usmani SZ, Berdeja JG, et al. Ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up[J]. J Clin Oncol, 2023, 41(6): 1265-1274. doi: 10.1200/JCO.22.00842
[21] Mi JQ, Zhao WH, Jing HM, et al. Phase Ⅱ, open-label study of ciltacabtagene autoleucel, an anti-B-cell maturation antigen chimeric antigen receptor-T-cell therapy, in Chinese patients with relapsed/refractory multiple myeloma(CARTIFAN-1)[J]. J Clin Oncol, 2023, 41(6): 1275-1284. doi: 10.1200/JCO.22.00690
[22] Wang D, Wang J, Hu G, et al. A phase 1 study of a novel fully human BCMA-targeting CAR(CT103A)in patients with relapsed/refractory multiple myeloma[J]. Blood, 2021, 137(21): 2890-2901. doi: 10.1182/blood.2020008936
[23] Li C, Wang D, Fang B, et al. Updated Results of Fumanba-1: A Phase 1b/2 Study of a Novel Fully Human B-Cell Maturation Antigen-Specific CAR T Cells(CT103A)in Patients with Relapsed and/or Refractory Multiple Myeloma[J]. Blood, 2022, 140(Suppl 1): 7435-7436.
[24] Yang M, Zhang WH, Yu K, et al. A novel BCMA CAR-T-cell therapy with optimized human scFv for treatment of relapsed/refractory multiple myeloma: results from phase Ⅰ clinical trials[J]. Haematologica, 2022, 107(8): 1960-1965. doi: 10.3324/haematol.2022.280629
[25] Chen WM, Fu CC, Fang BJ, et al. Phase Ⅱ study of fully human BCMA-targeting CAR-T cells(zevorcabtagene autoleucel)in patients with relapsed/refractory multiple myeloma[J]. Blood, 2022, 140(Supplement 1): 4564-4565. doi: 10.1182/blood-2022-168610
[26] Kumar SK, Baz RC, Orlowski RZ, et al. Results from lummicar-2: a phase 1b/2 study of fully human B-cell maturation antigen-specific CAR T cells(CT053) in patients with relapsed and/or refractory multiple myeloma[J]. Blood, 2020, 136: 28-29.
[27] Chu JH, He S, Deng YC, et al. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells[J]. Clin Cancer Res, 2014, 20(15): 3989-4000. doi: 10.1158/1078-0432.CCR-13-2510
[28] O'Neal J, Ritchey JK, Cooper ML, et al. CS1 CAR-T targeting the distal domain of CS1(SLAMF7) shows efficacy in high tumor burden myeloma model despite fratricide of CD8+CS1 expressing CAR-T cells[J]. Leukemia, 2022, 36(6): 1625-1634. doi: 10.1038/s41375-022-01559-4
[29] Gogishvili T, Danhof S, Prommersberger S, et al. SLAMF7-CAR T cells eliminate myeloma and confer selective fratricide of SLAMF7+normal lymphocytes[J]. Blood, 2017, 130(26): 2838-2847. doi: 10.1182/blood-2017-04-778423
[30] Amatya C, Pegues MA, Lam N, et al. Development of CAR T cells expressing a suicide gene plus a chimeric antigen receptor targeting signaling lymphocytic-activation molecule F7[J]. Mol Ther, 2021, 29(2): 702-717. doi: 10.1016/j.ymthe.2020.10.008
[31] Wang XL, Walter M, Urak R, et al. Lenalidomide enhances the function of CS1 chimeric antigen receptor-redirected T cells against multiple myeloma[J]. Clin Cancer Res, 2018, 24(1): 106-119. doi: 10.1158/1078-0432.CCR-17-0344
[32] Mathur R, Zhang Z, He J, et al. Universal SLAMF7-Specific CAR T-Cells As Treatment for Multiple Myeloma[J]. Blood, 2017, 130(Suppl 1): 502-502.
[33] Korst CLBM, Bruins WSC, Cosovic M, et al. Preclinical Activity of Allogeneic CS1-Specific CAR T-Cells(UCARTCS1) in Multiple Myeloma[J]. Blood, 2022, 140(Suppl 1): 4215-4216.
[34] Chen KH, Wada M, Pinz KG, et al. A compound chimeric antigen receptor strategy for targeting multiple myeloma[J]. Leukemia, 2018, 32(2): 402-412. doi: 10.1038/leu.2017.302
[35] Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma[J]. Nat Commun, 2020, 11(1): 2283. doi: 10.1038/s41467-020-16160-5
[36] Golubovskaya V, Zhou H, Li F, et al. Novel CS1 CAR-T cells and bispecific CS1-BCMA CAR-T cells effectively target multiple myeloma[J]. Biomedicines, 2021, 9(10): 1422. doi: 10.3390/biomedicines9101422
[37] Berahovich R, Zhou H, Xu S, et al. CAR-T cells based on novel BCMA monoclonal antibody block multiple myeloma cell growth[J]. Cancers(Basel), 2018, 10(9): 323.
[38] Li CG, Xu J, Luo WJ, et al. Bispecific CS1-BCMA CAR-T cells are clinically active in relapsed or refractory multiple myeloma[J]. Leukemia, 2024, 38(1): 149-159. doi: 10.1038/s41375-023-02065-x
[39] Dimopoulos MA, Moulopoulos LA, Maniatis A, et al. Solitary plasmacytoma of bone and asymptomatic multiple myeloma[J]. Blood, 2000, 96(6): 2037-2044. doi: 10.1182/blood.V96.6.2037
[40] Finsinger P, Grammatico S, Chisini M, et al. Clinical features and prognostic factors in solitary plasmacytoma[J]. Br J Haematol, 2016, 172(4): 554-560. doi: 10.1111/bjh.13870
[41] Hu XY, Li J, Fu MR, et al. The JAK/STAT signaling pathway: from bench to clinic[J]. Signal Transduct Target Ther, 2021, 6(1): 402. doi: 10.1038/s41392-021-00791-1
[42] van Andel H, Kocemba KA, Spaargaren M, et al. Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options[J]. Leukemia, 2019, 33(5): 1063-1075. doi: 10.1038/s41375-019-0404-1
-