-
摘要: 血栓性血小板减少性紫癜(thrombotic thrombocytopenic purpura,TTP)是一种致命的血栓性疾病,近年来引起了广泛关注。TTP的发病机制与血管性血友病因子裂解酶(ADAMTS13)的缺乏有关。诊断TTP主要依靠临床表现和血浆中ADAMTS13活性的检测。TTP的主要鉴别诊断是溶血性尿毒症综合征和其他类型的血栓性微血管病以及弥散性血管内凝血。目前,血浆置换和利妥昔单抗联合治疗是TTP的主要治疗方案。此外,一些新的药物治疗靶点也在不断涌现,如卡普赛珠单抗、N-乙酰半胱氨酸、硼替佐米和重组ADAMTS13等。展望未来,随着对TTP机制的进一步了解和新药临床试验的进行,相信会有更多有效的诊疗手段出现,目前有创的血浆置换治疗也将会逐步被简便的口服药物替代。
-
关键词:
- 血栓性血小板减少性紫癜 /
- 诊断 /
- 治疗
Abstract: Thrombotic thrombocytopenic purpura(TTP) is a life-threatening thrombotic disorder that has attracted widespread attention in recent years. The pathogenesis of TTP is associated with the deficiency of ADAMTS13, a von Willebrand factor-cleaving protease. The diagnosis of TTP primarily relies on clinical manifestations and measurement of ADAMTS13 activity in plasma. The main differential diagnoses of TTP are hemolytic uremic syndrome, other types of thrombotic microangiopathy, and disseminated intravascular coagulation. Currently, plasma exchange and treatment with rituximab are the mainstays of TTP management. In addition, new therapeutic targets have emerged, such as caplacizumab, N-acetylcysteine, bortezomib, and recombinant ADAMTS13. Looking ahead, with further understanding of the mechanisms underlying TTP and ongoing clinical trials of new drugs, it is anticipated that more effective diagnostic and therapeutic approaches will be developed. Non-invasive oral medications may gradually replace invasive plasma exchange as a treatment option.-
Key words:
- thrombotic thrombocytopenic purpura /
- diagnosis /
- treatment
-
-
[1] Moschcowitz E. An acute febrile pleiochromic anemia with hyaline thrombosis of the terminal arterioles and capillaries. An undescribed disease[J]. Thromb Haemost, 1978, 40(1): 4-8. doi: 10.1055/s-0039-1681113
[2] Singer K, Bornstein FP, Wile SA. Thrombotic thrombocytopenic purpura; hemorrhagic diathesis with generalized platelet thromboses[J]. Blood, 1947, 2(6): 542-554. doi: 10.1182/blood.V2.6.542.542
[3] Crawley JT, de Groot R, Xiang Y, et al. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor[J]. Blood, 2011, 118(12): 3212-3221. doi: 10.1182/blood-2011-02-306597
[4] Zhang XH, Halvorsen K, Zhang CZ, et al. Mechanoenzymatic cleavage of the ultralarge vascular protein von willebrand factor[J]. Science, 2009, 324(5932): 1330-1334. doi: 10.1126/science.1170905
[5] Cugno M, Mancini I, Consonni D, et al. Complement activation and renal dysfunction in patients with acquired thrombotic thrombocytopenic purpura[J]. Blood, 2023: 2278-2282.
[6] Zheng XL, Kaufman RM, Goodnough LT, et al. Effect of plasma exchange on plasma ADAMTS13 metalloprotease activity, inhibitor level, and clinical outcome in patients with idiopathic and nonidiopathic thrombotic thrombocytopenic purpura[J]. Blood, 2004, 103(11): 4043-4049. doi: 10.1182/blood-2003-11-4035
[7] Rock GA, Shumak KH, Buskard NA, et al. Comparison of plasma exchange with plasma infusion in the treatment of thrombotic thrombocytopenic purpura. Canadian Apheresis Study Group[J]. N Engl J Med, 1991, 325(6): 393-397. doi: 10.1056/NEJM199108083250604
[8] Htun KT, Davis AK. Neurological symptoms as the sole presentation of relapsed thrombotic thrombocytopenic purpura without microangiopathic haemolytic anaemia[J]. Thromb Haemost, 2014, 112(4): 838-840.
[9] Hughes C, McEwan JR, Longair I, et al. Cardiac involvement in acute thrombotic thrombocytopenic purpura: association with troponin T and IgG antibodies to ADAMTS 13[J]. J Thromb Haemost, 2009, 7(4): 529-536. doi: 10.1111/j.1538-7836.2009.03285.x
[10] Kremer Hovinga JA, Vesely SK, Terrell DR, et al. Survival and relapse in patients with thrombotic thrombocytopenic purpura[J]. Blood, 2010, 115(8): 1500-1511;quiz 1662. doi: 10.1182/blood-2009-09-243790
[11] Burns ER, Lou Y, Pathak A. Morphologic diagnosis of thrombotic thrombocytopenic purpura[J]. Am J Hematol, 2004, 75(1): 18-21. doi: 10.1002/ajh.10450
[12] Kanamori H, Takaishi Y, Takabayashi M, et al. Clinical significance of fragmented red cells after allogeneic bone marrow transplantation[J]. Int J Hematol, 2003, 77(2): 180-184. doi: 10.1007/BF02983218
[13] Peyvandi F, Mannucci PM, Valsecchi C, et al. ADAMTS13 content in plasma-derived factor Ⅷ/von Willebrand factor concentrates[J]. Am J Hematol, 2013, 88(10): 895-898. doi: 10.1002/ajh.23527
[14] Lim W, Vesely SK, George JN. The role of rituximab in the management of patients with acquired thrombotic thrombocytopenic purpura[J]. Blood, 2015, 125(10): 1526-1531. doi: 10.1182/blood-2014-10-559211
[15] Balduini CL, Gugliotta L, Luppi M, et al. Italian TTP Study Group. High versus standard dose methylprednisolone in the acute phase of idiopathic thrombotic thrombocytopenic purpura: a randomized study[J]. Ann Hematol, 2010, 89(6): 591-596. doi: 10.1007/s00277-009-0877-5
[16] Shao B, Hoover C, Shi H, et al. Deletion of platelet CLEC-2 decreases GPIbα-mediated integrin αIIbβ3 activation and decreases thrombosis in TTP[J]. Blood, 2022, 139(16): 2523-2533. doi: 10.1182/blood.2021012896
[17] Katkhouda N, Hurwitz MB, Rivera RT, et al. Laparoscopic splenectomy: outcome and efficacy in 103 consecutive patients[J]. Ann Surg, 1998, 228(4): 568-578. doi: 10.1097/00000658-199810000-00013
[18] Zeigler Z, Shadduck R, Gryn J, et al. Cryoprecipitate poor plasma does not improve early response in primary adult thrombotic thrombocytopenic purpura(TTP)[J]. J Clin Apher, 2001, 16(1): 19-22. doi: 10.1002/jca.1003
[19] Peyvandi F, Scully M, Kremer Hovinga JA, et al. Caplacizumab for Acquired Thrombotic Thrombocytopenic Purpura[J]. N Engl J Med, 2016, 374(6): 511-522. doi: 10.1056/NEJMoa1505533
[20] Scully M, Cataland SR, Peyvandi F, et al. HERCULES Investigators. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic Purpura[J]. N Engl J Med, 2019, 380(4): 335-346. doi: 10.1056/NEJMoa1806311
[21] Mingot-Castellano ME, García-Candel F, Martínez-Nieto J, et al. ADAMTS13 recovery in acute thrombotic thrombocytopenic purpura after caplacizumab therapy[J]. Blood, 2024, 143(18): 1807-1815. doi: 10.1182/blood.2023022725
[22] Tersteeg C, Roodt J, Van Rensburg WJ, et al. N-acetylcysteine in preclinical mouse and baboon models of thrombotic thrombocytopenic purpura[J]. Blood, 2017, 129(8): 1030-1038. doi: 10.1182/blood-2016-09-738856
[23] Chen J, Reheman A, Gushiken FC, et al. N-acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice[J]. J Clin Invest, 2011, 121(2): 593-603. doi: 10.1172/JCI41062
[24] Zafrani L, Canet E, Walter-Petrich A, et al. Magnesium sulphate in patients with thrombotic thrombocytopenic purpura(MAGMAT): a randomised, double-blind, superiority trial[J]. Intensive Care Med, 2023, 49: 1293-1304. doi: 10.1007/s00134-023-07178-6
[25] Benhamou Y, Boelle PY, Baudin B, et al. Reference Center for Thrombotic Microangiopathies. Cardiac troponin-I on diagnosis predicts early death and refractoriness in acquired thrombotic thrombocytopenic purpura. Experience of the French Thrombotic Microangiopathies Reference Center[J]. J Thromb Haemost, 2015, 13(2): 293-302. doi: 10.1111/jth.12790
[26] Hie M, Gay J, Galicier L, et al. French Thrombotic Microangiopathies Reference Centre. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura[J]. Blood, 2014, 124(2): 204-210. doi: 10.1182/blood-2014-01-550244
[27] Lotta LA, Wu HM, Mackie IJ, et al. Residual plasmatic activity of ADAMTS13 is correlated with phenotype severity in congenital thrombotic thrombocytopenic purpura[J]. Blood, 2012, 120(2): 440-448. doi: 10.1182/blood-2012-01-403113
-
计量
- 文章访问数: 1743
- PDF下载数: 2103
- 施引文献: 0