聚焦血液肿瘤患者CAR-T治疗后细胞因子释放综合征

李凌浩, 宫文洁, 吴德沛, 等. 聚焦血液肿瘤患者CAR-T治疗后细胞因子释放综合征[J]. 临床血液学杂志, 2025, 38(1): 77-83. doi: 10.13201/j.issn.1004-2806.2025.01.015
引用本文: 李凌浩, 宫文洁, 吴德沛, 等. 聚焦血液肿瘤患者CAR-T治疗后细胞因子释放综合征[J]. 临床血液学杂志, 2025, 38(1): 77-83. doi: 10.13201/j.issn.1004-2806.2025.01.015
LI Linghao, GONG Wenjie, WU Depei, et al. CAR-T cell therapy associated cytokine release syndrome in hematologic tumors[J]. J Clin Hematol, 2025, 38(1): 77-83. doi: 10.13201/j.issn.1004-2806.2025.01.015
Citation: LI Linghao, GONG Wenjie, WU Depei, et al. CAR-T cell therapy associated cytokine release syndrome in hematologic tumors[J]. J Clin Hematol, 2025, 38(1): 77-83. doi: 10.13201/j.issn.1004-2806.2025.01.015

聚焦血液肿瘤患者CAR-T治疗后细胞因子释放综合征

  • 基金项目:
    江苏省自然科学基金(No: BK20221235)
详细信息

CAR-T cell therapy associated cytokine release syndrome in hematologic tumors

More Information
  • 细胞因子释放综合征(cytokine release syndrome,CRS)是嵌合抗原受体(chimeric antigen receptor,CAR)T细胞免疫治疗最主要的并发症,其发病涉及巨噬细胞等释放大量细胞因子损伤相应器官。为尽早识别和应对CRS,探索其预测指标的研究正在积极进行中,新的预防和治疗方法也不断涌现。
  • 加载中
  • 图 1  CAR-T相关CRS细胞因子来源示意图

    图 2  CAR-T相关CRS处理示意图

  • [1]

    Hao Z, Li R, Meng L, et al. Macrophage, the potential key mediator in CAR-T related CRS[J]. Exp Hematol Oncol, 2020, 9: 15. doi: 10.1186/s40164-020-00171-5

    [2]

    Giavridis T, van der Stegen SJC, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade[J]. Nat Med, 2018, 24(6): 731-738. doi: 10.1038/s41591-018-0041-7

    [3]

    Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts[J]. Blood, 2019, 133(7): 697-709. doi: 10.1182/blood-2018-10-881722

    [4]

    Sachdeva M, Duchateau P, Depil S, et al. Granulocyte-macrophage colony-stimulating factor inactivation in CAR T-cells prevents monocyte-dependent release of key cytokine release syndrome mediators[J]. J Biol Chem, 2019, 294(14): 5430-5437. doi: 10.1074/jbc.AC119.007558

    [5]

    Ingelfinger F, De Feo D, Becher B. GM-CSF: Master regulator of the T cell-phagocyte interface during inflammation[J]. Semin Immunol, 2021, 54: 101518. doi: 10.1016/j.smim.2021.101518

    [6]

    Dibas A, Rhiel M, Patel VB, et al. Cell-Based Models of 'Cytokine Release Syndrome' Endorse CD40 L and Granulocyte-Macrophage Colony-Stimulating Factor Knockout in Chimeric Antigen Receptor T Cells as Mitigation Strategy[J]. Cells, 2023, 12(21): 2581. doi: 10.3390/cells12212581

    [7]

    Liu Y, Fang Y, Chen X, et al. Gasdermin E-mediated target cell pyroptosis by CAR T cells triggers cytokine release syndrome[J]. Sci Immunol, 2020, 5(43): eaax7969. doi: 10.1126/sciimmunol.aax7969

    [8]

    Norelli M, Camisa B, Barbiera G, et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells[J]. Nat Med, 2018, 24(6): 739-748. doi: 10.1038/s41591-018-0036-4

    [9]

    Chen Y, Li R, Shang S, et al. Therapeutic Potential of TNFα and IL1β Blockade for CRS/ICANS in CAR-T Therapy via Ameliorating Endothelial Activation[J]. Front Immunol, 2021, 12: 623610. doi: 10.3389/fimmu.2021.623610

    [10]

    Obstfeld AE, Frey NV, Mansfield K, et al. Cytokine release syndrome associated with chimeric-antigen receptor T-cell therapy: clinicopathological insights[J]. Blood, 2017, 130(23): 2569-2572. doi: 10.1182/blood-2017-08-802413

    [11]

    Kang S, Tanaka T, Narazaki M, et al. Targeting Interleukin-6 Signaling in Clinic[J]. Immunity, 2019, 50(4): 1007-1023. doi: 10.1016/j.immuni.2019.03.026

    [12]

    Maude SL, Barrett D, Teachey DT, et al. Managing cytokine release syndrome associated with novel T cell-engaging therapies[J]. Cancer J, 2014, 20(2): 119-122. doi: 10.1097/PPO.0000000000000035

    [13]

    Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages[J]. Nat Rev Immunol, 2020, 20(6): 355-362. doi: 10.1038/s41577-020-0331-4

    [14]

    Shao M, Yu Q, Teng X, et al. CRS-related coagulopathy in BCMA targeted CAR-T therapy: a retrospective analysis in a phase Ⅰ/Ⅱ clinical trial[J]. Bone Marrow Transplant, 2021, 56(7): 1642-1650. doi: 10.1038/s41409-021-01226-9

    [15]

    Mantovani A, Dinarello CA, Molgora M, et al. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity[J]. Immunity, 2019, 50(4): 778-795. doi: 10.1016/j.immuni.2019.03.012

    [16]

    Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes[J]. Cell, 2021, 184(1): 149-168. e17. doi: 10.1016/j.cell.2020.11.025

    [17]

    Qi J, Lv X, Chen J, et al. TNF-α increases the risk of bleeding in patients after CAR T-cell therapy: A bleeding model based on a real-world study of Chinese CAR T Working Party[J]. Hematol Oncol, 2022, 40(1): 63-71.

    [18]

    Kieler M, Hofmann M, Schabbauer G. More than just protein building blocks: how amino acids and related metabolic pathways fuel macrophage polarization[J]. FEBS J, 2021, 288(12): 3694-3714. doi: 10.1111/febs.15715

    [19]

    Read JA, Rouce RH, Mo F, et al. Apoptosis of Hematopoietic Stem Cells Contributes to Bone Marrow Suppression Following Chimeric Antigen Receptor T Cell Therapy[J]. Transplant Cell Ther, 2023, 29(3): 165. e1-165. e7. doi: 10.1016/j.jtct.2022.12.020

    [20]

    Wei Z, Cheng Q, Xu N, et al. Investigation of CRS-associated cytokines in CAR-T therapy with meta-GNN and pathway crosstalk[J]. BMC Bioinformatics, 2022, 23(1): 373. doi: 10.1186/s12859-022-04917-2

    [21]

    Wang J, Mou N, Yang Z, et al. Efficacy and safety of humanized anti-CD19-CAR-T therapy following intensive lymphodepleting chemotherapy for refractory/relapsed B acute lymphoblastic leukaemia[J]. Br J Haematol, 2020, 191(2): 212-222. doi: 10.1111/bjh.16623

    [22]

    Teachey DT, Lacey SF, Shaw PA, et al. Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia[J]. Cancer Discov, 2016, 6(6): 664-679. doi: 10.1158/2159-8290.CD-16-0040

    [23]

    Hay KA, Hanafi LA, Li D, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy[J]. Blood, 2017, 130(21): 2295-2306. doi: 10.1182/blood-2017-06-793141

    [24]

    Goldsmith SR, Shouse G, Wong FL, et al. Clonal Hematopoiesis is Associated with Severe Cytokine Release Syndrome in Patients Treated with Chimeric Antigen Receptor T-cell(CART)Therapy[J]. Transplant Cell Ther, 2024, 30(9): 927. e1-927. e9. doi: 10.1016/j.jtct.2024.06.008

    [25]

    Zhang M, Long X, Xiao Y, et al. Assessment and predictive ability of the absolute neutrophil count in peripheral blood for in vivo CAR T cells expansion and CRS[J]. J Immunother Cancer, 2023, 11(11): e007790. doi: 10.1136/jitc-2023-007790

    [26]

    Pennisi M, Sanchez-Escamilla M, Flynn JR, et al. Modified EASIX predicts severe cytokine release syndrome and neurotoxicity after chimeric antigen receptor T cells[J]. Blood Adv, 2021, 5(17): 3397-3406. doi: 10.1182/bloodadvances.2020003885

    [27]

    Zhao Y, Zhang X, Zhang M, et al. Modified EASIX scores predict severe CRS/ICANS in patients with acute myeloid leukemia following CLL1 CAR-T cell therapy[J]. Ann Hematol, 2024, 103(3): 969-980. doi: 10.1007/s00277-024-05617-y

    [28]

    de Boer JW, Keijzer K, Pennings ERA, et al. Population-Based External Validation of the EASIX Scores to Predict CAR T-Cell-Related Toxicities[J]. Cancers(Basel), 2023, 15(22): 5443.

    [29]

    Wang L, Lv Y, Zhou L, et al. Cytokine-based models for efficient differentiation between infection and cytokine release syndrome in patients with hematological malignancies[J]. Exp Hematol Oncol, 2024, 13(1): 28. doi: 10.1186/s40164-024-00495-6

    [30]

    Wei Z, Zhao C, Zhang M, et al. PrCRS: a prediction model of severe CRS in CAR-T therapy based on transfer learning[J]. BMC Bioinformatics, 2024, 25(1): 197. doi: 10.1186/s12859-024-05804-8

    [31]

    Jiang H, Liu L, Guo T, et al. Improving the safety of CAR-T cell therapy by controlling CRS-related coagulopathy[J]. Ann Hematol, 2019, 98(7): 1721-1732. doi: 10.1007/s00277-019-03685-z

    [32]

    Galli E, Sorà F, Hohaus S, et al. Endothelial activation predicts disseminated intravascular coagulopathy, cytokine release syndrome and prognosis in patients treated with anti-CD19 CAR-T cells[J]. Br J Haematol, 2023, 201(1): 86-94. doi: 10.1111/bjh.18596

    [33]

    Wang Y, Song Z, Geng Y, et al. The risk factors and early predictive model of hematotoxicity after CD19 chimeric antigen receptor T cell therapy[J]. Front Oncol, 2022, 12: 987965. doi: 10.3389/fonc.2022.987965

    [34]

    Liu Y, Liang B, Liu Y, et al. Cytokine Release Syndrome Is an Independent Risk Factor Associated With Platelet Transfusion Refractoriness After CAR-T Therapy for Relapsed/Refractory Acute Lymphoblastic Leukemia[J]. Front Pharmacol, 2021, 12: 702152. doi: 10.3389/fphar.2021.702152

    [35]

    Rejeski K, Perez A, Sesques P, et al. CAR-HEMATOTOX: a model for CAR T-cell-related hematologic toxicity in relapsed/refractory large B-cell lymphoma[J]. Blood, 2021, 138(24): 2499-2513. doi: 10.1182/blood.2020010543

    [36]

    Frey NV, Shaw PA, Hexner EO, et al. Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia[J]. J Clin Oncol, 2020, 38(5): 415-422. doi: 10.1200/JCO.19.01892

    [37]

    Wen H, Huo G, Hou T, et al. Preclinical efficacy and safety evaluation of interleukin-6-knockdown CAR-T cells targeting at CD19[J]. Ann Transl Med, 2021, 9(23): 1713. doi: 10.21037/atm-21-3372

    [38]

    Liu ZF, Chen LY, Wang J, et al. Successful treatment of acute B lymphoblastic leukemia relapse in the skin and testicle by anti-CD19 CAR-T with IL-6 knocking down: a case report[J]. Biomark Res, 2020, 8: 12. doi: 10.1186/s40364-020-00193-5

    [39]

    Chen LY, Kang LQ, Zhou HX, et al. Successful application of anti-CD19 CAR-T therapy with IL-6 knocking down to patients with central nervous system B-cell acute lymphocytic leukemia[J]. Transl Oncol, 2020, 13(11): 100838. doi: 10.1016/j.tranon.2020.100838

    [40]

    Gong WJ, Qiu Y, Li MH, et al. Investigation of the risk factors to predict cytokine release syndrome in relapsed or refractory B-cell acute lymphoblastic leukemia patients receiving IL-6 knocking down anti-CD19 chimeric antigen receptor T-cell therapy[J]. Front Immunol, 2022, 13: 922212. doi: 10.3389/fimmu.2022.922212

    [41]

    Xue L, Yi Y, Xu Q, et al. Chimeric antigen receptor T cells self-neutralizing IL6 storm in patients with hematologic malignancy[J]. Cell Discov, 2021, 7(1): 84. doi: 10.1038/s41421-021-00299-6

    [42]

    Lin MY, Nam E, Shih RM, et al. Self-regulating CAR-T cells modulate cytokine release syndrome in adoptive T-cell therapy[J]. J Exp Med, 2024, 221(6): e20221988. doi: 10.1084/jem.20221988

    [43]

    Zhang P, Ying P, Li H, et al. A novel safer CD19CAR with shRNA interference of IFN-γ can reduce multiple cytokine levels without significantly compromising its killing efficacy[J]. Apoptosis, 2024, 29(3-4): 556-567. doi: 10.1007/s10495-023-01925-2

    [44]

    Gong N, Han X, Xue L, et al. In situ PEGylation of CAR T cells alleviates cytokine release syndrome and neurotoxicity[J]. Nat Mater, 2023, 22(12): 1571-1580. doi: 10.1038/s41563-023-01646-6

    [45]

    Li X, Gong N, Tian F, et al. Suppression of cytokine release syndrome during CAR-T-cell therapy via a subcutaneously injected interleukin-6-adsorbing hydrogel[J]. Nat Biomed Eng, 2023, 7(9): 1129-1141. doi: 10.1038/s41551-023-01084-4

    [46]

    Schuster SJ, Svoboda J, Chong EA, et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas[J]. N Engl J Med, 2017, 377(26): 2545-2554. doi: 10.1056/NEJMoa1708566

    [47]

    Costa BA, Flynn J, Nishimura N, et al. Prognostic impact of corticosteroid and tocilizumab use following chimeric antigen receptor T-cell therapy for multiple myeloma[J]. Blood Cancer J, 2024, 14(1): 84. doi: 10.1038/s41408-024-01048-0

    [48]

    Wang X, Zhang B, Zhang Q, et al. Impact of tocilizumab on anti-CD19 chimeric antigen receptor T-cell therapy in B-cell acute lymphoblastic leukemia[J]. Cancer, 2024, 130(15): 2660-2669. doi: 10.1002/cncr.35316

    [49]

    Perl M, Herfeld K, Harrer DC, et al. Tocilizumab administration in cytokine release syndrome is associated with hypofibrinogenemia after chimeric antigen receptor T-cell therapy for hematologic malignancies[J]. Haematologica, 2024, 109(9): 2969-2977.

    [50]

    Poiret T, Vikberg S, Schoutrop E, et al. CAR T cells and T cells phenotype and function are impacted by glucocorticoid exposure with different magnitude[J]. J Transl Med, 2024, 22(1): 273. doi: 10.1186/s12967-024-05063-4

    [51]

    Terao T, Kitamura W, Fujii N, et al. Negative Prognostic Impact of High-Dose or Long-Term Corticosteroid Use in Patients with Relapsed or Refractory B-Cell Lymphoma Who Received Tisagenlecleucel[J]. Transplant Cell Ther, 2023, 29(9): 573. e1-573. e8. doi: 10.1016/j.jtct.2023.06.018

    [52]

    Pu Y, Zhao Y, Qi Y, et al. Multi-centers experience using therapeutic plasma exchange for corticosteroid/tocilizumab-refractory cytokine release syndrome following CAR-T therapy[J]. Int Immunopharmacol, 2024, 130: 111761. doi: 10.1016/j.intimp.2024.111761

    [53]

    Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities[J]. Nat Rev Clin Oncol, 2018, 15(1): 47-62. doi: 10.1038/nrclinonc.2017.148

    [54]

    Thompson JA, Schneider BJ, Brahmer J, et al. NCCN Guidelines Insights: Management of Immunotherapy-Related Toxicities, Version 1.2020[J]. J Natl Compr Canc Netw, 2020, 18(3): 230-241. doi: 10.6004/jnccn.2020.0012

    [55]

    Gutierrez C, Brown ART, Herr MM, et al. The chimeric antigen receptor-intensive care unit(CAR-ICU)initiative: Surveying intensive care unit practices in the management of CAR T-cell associated toxicities[J]. J Crit Care, 2020, 58: 58-64. doi: 10.1016/j.jcrc.2020.04.008

    [56]

    Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas(TRANSCEND NHL 001): a multicentre seamless design study[J]. Lancet, 2020, 396(10254): 839-852. doi: 10.1016/S0140-6736(20)31366-0

    [57]

    Yang Y, Zhang Y, Xing X, et al. IL-6 translation is a therapeutic target of human cytokine release syndrome[J]. J Exp Med, 2023, 220(11): e20230577. doi: 10.1084/jem.20230577

    [58]

    Strati P, Ahmed S, Kebriaei P, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma[J]. Blood Adv, 2020, 4(13): 3123-3127. doi: 10.1182/bloodadvances.2020002328

    [59]

    Jain MD, Smith M, Shah NN. How I treat refractory CRS and ICANS after CAR T-cell therapy[J]. Blood, 2023, 141(20): 2430-2442.

    [60]

    Diorio C, Vatsayan A, Talleur AC, et al. Anakinra utilization in refractory pediatric CAR T-cell associated toxicities[J]. Blood Adv, 2022, 6(11): 3398-3403. doi: 10.1182/bloodadvances.2022006983

    [61]

    Zhang L, Wang S, Xu J, et al. Etanercept as a new therapeutic option for cytokine release syndrome following chimeric antigen receptor T cell therapy[J]. Exp Hematol Oncol, 2021, 10(1): 16. doi: 10.1186/s40164-021-00209-2

    [62]

    陈诗彧, 陈伟红, 万晓春, 等. 血液透析滤过处理CAR-T治疗后IL-6受体抑制剂治疗无效的3~4级细胞因子释放综合征3例[J]. 中华血液学杂志, 2022, 43(6): 494-498.

  • 加载中

(2)

计量
  • 文章访问数:  581
  • PDF下载数:  126
  • 施引文献:  0
出版历程
收稿日期:  2024-04-27
修回日期:  2024-12-08
刊出日期:  2025-01-01

目录