脂质代谢参与多发性骨髓瘤发病机制的研究进展

郭弘昊, 许佩佩, 陈兵. 脂质代谢参与多发性骨髓瘤发病机制的研究进展[J]. 临床血液学杂志, 2025, 38(1): 84-90. doi: 10.13201/j.issn.1004-2806.2025.01.016
引用本文: 郭弘昊, 许佩佩, 陈兵. 脂质代谢参与多发性骨髓瘤发病机制的研究进展[J]. 临床血液学杂志, 2025, 38(1): 84-90. doi: 10.13201/j.issn.1004-2806.2025.01.016
GUO Honghao, XU Peipei, CHEN Bing. Research progress in the involvement of lipid metabolism in the pathogenesis of multiple myeloma[J]. J Clin Hematol, 2025, 38(1): 84-90. doi: 10.13201/j.issn.1004-2806.2025.01.016
Citation: GUO Honghao, XU Peipei, CHEN Bing. Research progress in the involvement of lipid metabolism in the pathogenesis of multiple myeloma[J]. J Clin Hematol, 2025, 38(1): 84-90. doi: 10.13201/j.issn.1004-2806.2025.01.016

脂质代谢参与多发性骨髓瘤发病机制的研究进展

  • 基金项目:
    国家自然科学基金(No: 82273954)
详细信息

Research progress in the involvement of lipid metabolism in the pathogenesis of multiple myeloma

More Information
  • 多发性骨髓瘤是一种常见的血液系统恶性肿瘤,其特征是骨髓中出现异常克隆浆细胞。多发性骨髓瘤的病因尚不清楚,因此,其治疗仍面临极大挑战。最近的研究表明,脂质代谢与多发性骨髓瘤的发生发展密切相关。脂肪酸、胆固醇、前列腺素和磷脂等脂质通过诱导内质网应激、促进细胞凋亡和调控信号通路的表达参与多发性骨髓瘤的发生和发展。因此,靶向脂质代谢可以为多发性骨髓瘤提供一种很有前途的治疗策略。文章重点综述脂质代谢在多发性骨髓瘤发生发展中的作用机制及潜在靶点。
  • 加载中
  • 图 1  脂肪酸代谢参与促进或抑制MM进展的作用机制

    表 1  脂质代谢相关药物在MM中可能的作用靶点及协同药物

    分类 子分类 药物作用的靶点 协同药物 参考文献
    FABP抑制剂 BMS309403 抑制MM细胞中的FABP5相关Myc-IRE/XBP1通路,驱动下调真核翻译起始因子5B,通过抑制未折叠蛋白反应诱导MM细胞内质网应激;抑制骨髓脂肪细胞提供的FABP4,削弱MM细胞摄取脂肪酸的能力,降低IL-6及RANKL等促炎因子的水平。 [5-6]
    鱼油类 鱼油 抑制SREBP-1、STAT3通路,减少脂肪酸合成;激活PPARγ增加肝素前脂蛋白脂酶的活性,加快脂肪酸清除;选择性上调NRF2-ATF3/4-CHAC1通路降低谷胱甘肽水平,诱导MM细胞铁死亡。 硼替佐米 [7-9]
    贝特类 非诺贝特 激活PPARα通路提高脂蛋白脂酶的活性,清除MM细胞中异常堆积的脂质。 伊沙佐米 [10-11]
    他汀类 辛伐他汀 降低辅酶Q水平,致MM细胞氧化磷酸化受损。 硼替佐米 [12]
    洛伐他汀 抑制甲羟戊酸途径减少异戊二烯供体的生成,破坏单克隆蛋白的运输诱导MM细胞死亡。 VSW1198 [13-14]
      氟伐他汀 诱导t(4;14)阳性细胞香叶基香叶基焦磷酸耗竭激活了综合应激反应。 硼替佐米 [15]
    匹伐他汀 在p53缺失的情况下,上调PUMA的活性,通过杂交结合前存活Bcl-2家族成员来促进BH3模拟杀伤并上调ATF4/ISR-NOXA通路。 维奈托克 [16-17]
    微粒体甘油三酯转移蛋白抑制剂 洛美他派 靶向布鲁顿酪氨酸激酶调控CD38的下游信号转导,触发MM细胞中的细胞周期停滞和凋亡。   [18]
    哺乳动物雷帕霉素靶蛋白抑制剂 替西罗莫司 抑制MM细胞中哺乳动物雷帕霉素靶蛋白通路激活,阻止MM细胞利用SR-BI从HDL-C中吸收胆固醇酯。 曲美替尼 [19-21]
      依维莫司 通过IKZF3和Blimp-1介导Bcl-2上调。 维奈托克 [22]
    抗LPAR2抗体 bs-10368R 抑制LPA-LPAR2轴及其下游MEK1/2-ERK1/2信号通路,抑制MM细胞线粒体氧化磷酸化产生ATP。 卡非佐米 [23]
    鞘氨醇-1-磷酸受体调节剂 芬戈莫德 抑制S1P诱导的丝裂原活化蛋白激酶磷酸化。 卡非佐米 [24]
    鞘氨醇激酶抑制剂 ABC294640 抑制S1P诱导的丝裂原活化蛋白激酶磷酸化;下调SET/PP2AC/PARK2途径诱导MM细胞系的线粒体自噬和凋亡。 卡非佐米 [24-25]
      SK1-I 抑制S1P诱导的丝裂原活化蛋白激酶磷酸化。 卡非佐米 [24]
    葡萄糖神经酰胺合成酶抑制剂 依利格鲁司特 阻断神经酰胺转化为自噬相关鞘糖脂,上调TRAF3活性并抑制了破骨细胞的生成,改善MM骨病。 [26]
    ULK1抑制剂 MRT68921 阻断CD28-Ca2+-AMPK-ULK1/HuR/ATG5介导的脂滴自噬机制显著增加了脂滴数量,抑制了MM细胞的线粒体呼吸。 美法仑 [27]
    下载: 导出CSV
  • [1]

    Statistics at a Glance. Cancer stat facts: Myeloma[EB/OL]. [2023-12-24]. https://seer.cancer.gov/statfacts/html/mulmy.html.

    [2]

    Morris EV, Suchacki KJ, Hocking J, et al. Myeloma Cells Down-Regulate Adiponectin in Bone Marrow Adipocytes Via TNF-Alpha[J]. J Bone Miner Res, 2020, 35(5): 942-955. doi: 10.1002/jbmr.3951

    [3]

    黄倩蕾, 赵冉冉, 杨冰玉, 等. 初诊多发性骨髓瘤的代谢轮廓及其代谢通路[J]. 中华肿瘤杂志, 2022, 44(12): 1369-1375. doi: 10.3760/cma.j.cn112152-20201212-01066

    [4]

    Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, et al. The role of lipids in cancer progression and metastasis[J]. Cell Metab, 2022, 34(11): 1675-1699. doi: 10.1016/j.cmet.2022.09.023

    [5]

    Farrell M, Fairfield H, Karam M, et al. Targeting the fatty acid binding proteins disrupts multiple myeloma cell cycle progression and MYC signaling[J]. Elife, 2023, 12: e81184. doi: 10.7554/eLife.81184

    [6]

    Shu LL, Li JY, Chen SZ, et al. Bone Marrow Adipocyte Shapes Metabolism and Immunity in Tumor Microenvironment to Promote Multiple Myeloma[J]. Blood, 2021, 138(Supplement 1): 892. doi: 10.1182/blood-2021-150208

    [7]

    李佳润, 范琰, 刘梅林. 二十碳五烯酸防治心血管疾病的进展[J]. 中国临床研究, 2021, 34(10): 1423-1426.

    [8]

    D'Eliseo D, Di Renzo L, Santoni A, et al. Docosahexaenoic acid(DHA)promotes immunogenic apoptosis in human multiple myeloma cells, induces autophagy and inhibits STAT3 in both tumor and dendritic cells[J]. Genes Cancer, 2017, 8(1-2): 426-437. doi: 10.18632/genesandcancer.131

    [9]

    Chen J, Zaal EA, Berkers CR, et al. Omega-3 Fatty Acids DHA and EPA Reduce Bortezomib Resistance in Multiple Myeloma Cells by Promoting Glutathione Degradation[J]. Cells, 2021, 10(9): 2287. doi: 10.3390/cells10092287

    [10]

    徐红佩, 肖淑梅, 王珊, 等. 多发性骨髓瘤细胞来源的细胞外囊泡在临床诊疗中的研究进展[J]. 临床血液学杂志, 2024, 37(9): 672-676. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2024.09.014

    [11]

    Xu G, Huang S, Peng J, et al. Targeting lipid metabolism in multiple myeloma cells: rational development of a synergistic strategy with proteasome inhibitors[J]. Br J Pharmacol, 2021, 178(23): 4741-4757. doi: 10.1111/bph.15653

    [12]

    Zaal EA, de Grooth HJ, Oudaert I, et al. Targeting coenzyme Q10 synthesis overcomes bortezomib resistance in multiple myeloma[J]. Mol Omics, 2022, 18(1): 19-30. doi: 10.1039/D1MO00106J

    [13]

    Haney SL, Varney ML, Williams JT, et al. Geranylgeranyl diphosphate synthase inhibitor and proteasome inhibitor combination therapy in multiple myeloma[J]. Exp Hematol Oncol, 2022, 11(1): 5. doi: 10.1186/s40164-022-00261-6

    [14]

    Haney SL, Varney ML, Chhonker Y, et al. In vivo evaluation of combination therapy targeting the isoprenoid biosynthetic pathway[J]. Pharmacol Res, 2021, 167: 105528. doi: 10.1016/j.phrs.2021.105528

    [15]

    Longo J, Smirnov P, Li Z, et al. The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma[J]. Leukemia, 2021, 35(3): 796-808. doi: 10.1038/s41375-020-0962-2

    [16]

    Juarez D, Buono R, Matulis SM, et al. Statin-induced Mitochondrial Priming Sensitizes Multiple Myeloma Cells to BCL2 and MCL-1 Inhibitors[J]. Cancer Res Commun, 2023, 3(12): 2497-2509. doi: 10.1158/2767-9764.CRC-23-0350

    [17]

    Fruman D, Juarez D, Diep G, et al. Statins Enhance Killing of Multiple Myeloma Cells By the BCL-2 Inhibitor Venetoclax and the MCL-1 Inhibitor S63845[J]. Blood, 2019, 134(Supplement_1): 4413. doi: 10.1182/blood-2019-131218

    [18]

    Saeed MEM, Boulos JC, Mücklich SB, et al. Disruption of Lipid Raft Microdomains, Regulation of CD38, TP53, and MYC Signaling, and Induction of Apoptosis by Lomitapide in Multiple Myeloma Cells[J]. Cancer Genomics Proteomics, 2022, 19(5): 540-555. doi: 10.21873/cgp.20339

    [19]

    Fruhwürth S, Krieger S, Winter K, et al. Inhibition of mTOR down-regulates scavenger receptor, class B, type Ⅰ(SR-BI)expression, reduces endothelial cell migration and impairs nitric oxide production[J]. Biochim Biophys Acta, 2014, 1841(7): 944-953. doi: 10.1016/j.bbalip.2014.03.014

    [20]

    Ramakrishnan V, Kumar S. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise[J]. Leuk Lymphoma, 2018, 59(11): 2524-2534. doi: 10.1080/10428194.2017.1421760

    [21]

    Sun K, Jin L, Karolová J, et al. Combination Treatment Targeting mTOR and MAPK Pathways Has Synergistic Activity in Multiple Myeloma[J]. Cancers(Basel), 2023, 15(8): 2373.

    [22]

    Osada N, Kikuchi J, Koyama D, et al. mTOR inhibitors sensitize multiple myeloma cells to venetoclaxviaIKZF3-and Blimp-1-mediated BCL-2 upregulation[J]. Haematologica, 2021, 106(11): 3008-3013. doi: 10.3324/haematol.2021.278506

    [23]

    Su P, Xiao L, Ye L, et al. A novel role of lysophosphatidic acid(LPA)in human myeloma resistance to proteasome inhibitors[J]. J Hematol Oncol, 2022, 15(1): 55. doi: 10.1186/s13045-022-01269-5

    [24]

    Tanaka Y, Okabe S, Ohyashiki K, et al. Potential of a sphingosine 1-phosphate receptor antagonist and sphingosine kinase inhibitors as targets for multiple myeloma treatment[J]. Oncol Lett, 2022, 23(4): 111. doi: 10.3892/ol.2022.13231

    [25]

    Wu J, Fan S, Feinberg D, et al. Inhibition of Sphingosine Kinase 2 Results in PARK2-Mediated Mitophagy and Induces Apoptosis in Multiple Myeloma[J]. Curr Oncol, 2023, 30(3): 3047-3063. doi: 10.3390/curroncol30030231

    [26]

    Leng H, Zhang H, Li L, et al. Modulating glycosphingolipid metabolism and autophagy improves outcomes in pre-clinical models of myeloma bone disease[J]. Nat Commun, 2022, 13(1): 7868. doi: 10.1038/s41467-022-35358-3

    [27]

    Peng P, Chavel C, Liu W, et al. Pro-survival signaling regulates lipophagy essential for multiple myeloma resistance to stress-induced death[J]. Cell Rep, 2024, 43(7): 114445. doi: 10.1016/j.celrep.2024.114445

    [28]

    Panaroni C, Fulzele K, Mori T, et al. Multiple myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid transporter proteins[J]. Blood, 2022, 139(6): 876-888. doi: 10.1182/blood.2021013832

    [29]

    Ma X, Xiao L, Liu L, et al. CD36-mediated ferroptosis dampens intratumoral CD8+T cell effector function and impairs their antitumor ability[J]. Cell Metab, 2021, 33(5): 1001-1012. e5. doi: 10.1016/j.cmet.2021.02.015

    [30]

    Gudgeon N, Giles H, Bishop EL, et al. Uptake of long-chain fatty acids from the bone marrow suppresses CD8+T-cell metabolism and function in multiple myeloma[J]. Blood Adv, 2023, 7(20): 6035-6047. doi: 10.1182/bloodadvances.2023009890

    [31]

    吴瑞芳, 冯明, 孟健. 脂肪酸结合蛋白4在肥胖相关肿瘤中的作用综述[J]. 上海交通大学学报(医学版), 2023, 43(10): 1311-1316. doi: 10.3969/j.issn.1674-8115.2023.10.013

    [32]

    Tentolouris A, Ntanasis-Stathopoulos I, Terpos E. Obesity and multiple myeloma: Emerging mechanisms and perspectives[J]. Semin Cancer Biol, 2023, 92: 45-60. doi: 10.1016/j.semcancer.2023.04.003

    [33]

    Li YJ, Zhang C, Martincuks A, et al. STAT proteins in cancer: orchestration of metabolism[J]. Nat Rev Cancer, 2023, 23(3): 115-134. doi: 10.1038/s41568-022-00537-3

    [34]

    Luo HQ, Huang YM, Li J, et al. DHA inhibits invasion and metastasis in NSCLC cells by interfering with CCL18/STAT3 signaling pathway[J]. Clin Exp Med, 2023, 23(6): 2311-2320. http://pubmed.ncbi.nlm.nih.gov/36217054/

    [35]

    Wang L, Choi HS, Su Y, et al. 7S, 15R-Dihydroxy-16S, 17S-Epoxy-Docosapentaenoic Acid, a Novel DHA Epoxy Derivative, Inhibits Colorectal Cancer Stemness through Repolarization of Tumor-Associated Macrophage Functions and the ROS/STAT3 Signaling Pathway[J]. Antioxidants(Basel), 2021, 10(9): 1459.

    [36]

    Sun L, Shi Y, Wang G, et al. PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells[J]. Leukemia, 2018, 32(1): 184-193. doi: 10.1038/leu.2017.162

    [37]

    Leone P, Solimando AG, Prete M, et al. Unraveling the Role of Peroxisome Proliferator-Activated Receptor β/Δ(PPAR β/Δ)in Angiogenesis Associated with Multiple Myeloma[J]. Cells, 2023, 12(7): 1011. doi: 10.3390/cells12071011

    [38]

    Liu X, Xu P, Wang L, et al. Cholesterol Levels Provide Prognostic Information in Patients with Multiple Myeloma[J]. Clin Lab, 2020, 66(4).

    [39]

    Xian M, Wang Q, Xiao LL, et al. Leukocyte immunoglobulin-like receptor B1(LILRB1) protects human multiple myeloma cells from ferroptosis by maintaining cholesterol homeostasis[J]. Nat Commun, 2024, 15: 5767. doi: 10.1038/s41467-024-50073-x

    [40]

    Ponvilawan B, Charoenngam N, Rittiphairoj T, et al. Receipt of Statins Is Associated With Lower Risk of Multiple Myeloma: Systematic Review and Meta-analysis[J]. Clin Lymphoma Myeloma Leuk, 2020, 20(7): e399-e413. doi: 10.1016/j.clml.2020.02.011

    [41]

    宋洋, 杨波, 卢学春. 伴t(4;14)易位的多发性骨髓瘤的诊疗进展[J]. 临床血液学杂志, 2023, 36(9): 688-692. https://lcxy.whuhzzs.com/article/doi/10.13201/j.issn.1004-2806.2023.09.015

    [42]

    Choi T, Choi IY, Han K, et al. Lipid Level, Lipid Variability, and Risk of Multiple Myeloma: A Nationwide Population-Based Study of 3, 527, 776 Subjects[J]. Cancers(Basel), 2021, 13(3): 540. http://www.xueshufan.com/publication/3126903240

    [43]

    Liang L, Li J, Fu H, et al. Identification of High Serum Apolipoprotein A1 as a Favorable Prognostic Indicator in Patients with Multiple Myeloma[J]. J Cancer, 2019, 10(20): 4852-4859. doi: 10.7150/jca.31357

    [44]

    Petrusca DN, Mulcrone PL, Macar DA, et al. GFI1-Dependent Repression of SGPP1 Increases Multiple Myeloma Cell Survival[J]. Cancers, 2022, 14(3): 772. doi: 10.3390/cancers14030772

    [45]

    Ma H, Wang H, Tian F, et al. PIWI-Interacting RNA-004800 Is Regulated by S1P Receptor Signaling Pathway to Keep myeloma Cell Survival[J]. Front Oncol, 2020, 10: 438. doi: 10.3389/fonc.2020.00438

    [46]

    Cartier A, Hla T. Sphingosine 1-phosphate: Lipid signaling in pathology and therapy[J]. Science, 2019, 366(6463): eaar5551. doi: 10.1126/science.aar5551

    [47]

    Pang M, Li C, Zheng D, et al. S1PR2 Knockdown Promotes Migration and Invasion in Multiple Myeloma Cells via NF-κB Activation[J]. Cancer Manag Res, 2020, 12: 7857-7865. doi: 10.2147/CMAR.S237330

    [48]

    Zadoorian A, Du XM, Yang HY. Lipid droplet biogenesis and functions in health and disease[J]. Nat Rev Endocrinol, 2023, 19: 443-459. doi: 10.1038/s41574-023-00845-0

    [49]

    Kwak JG, Lee J. Bone Marrow Adipocytes Contribute to Tumor Microenvironment-Driven Chemoresistance via Sequestration of Doxorubicin[J]. Cancers(Basel), 2023, 15(10): 2737. http://www.semanticscholar.org/paper/87781a7348d29dbfbab29825bef518e2f8de44e2

    [50]

    Fan H, Xia S, Xiang J, et al. Trans-vaccenic acid reprograms CD8+T cells and anti-tumour immunity[J]. Nature, 2023, 623(7989): 1034-1043. doi: 10.1038/s41586-023-06749-3

  • 加载中

(1)

(1)

计量
  • 文章访问数:  957
  • PDF下载数:  134
  • 施引文献:  0
出版历程
收稿日期:  2024-05-20
修回日期:  2024-12-13
刊出日期:  2025-01-01

目录