数字化医疗工具在白血病管理中应用进展

吴迪, 黎纬明. 数字化医疗工具在白血病管理中应用进展[J]. 临床血液学杂志, 2025, 38(3): 166-170. doi: 10.13201/j.issn.1004-2806.2025.03.002
引用本文: 吴迪, 黎纬明. 数字化医疗工具在白血病管理中应用进展[J]. 临床血液学杂志, 2025, 38(3): 166-170. doi: 10.13201/j.issn.1004-2806.2025.03.002
WU Di, LI Weiming. Advances in the application of digital health tools for leukemia management[J]. J Clin Hematol, 2025, 38(3): 166-170. doi: 10.13201/j.issn.1004-2806.2025.03.002
Citation: WU Di, LI Weiming. Advances in the application of digital health tools for leukemia management[J]. J Clin Hematol, 2025, 38(3): 166-170. doi: 10.13201/j.issn.1004-2806.2025.03.002

数字化医疗工具在白血病管理中应用进展

  • 基金项目:
    十四五国家重点研发计划专项项目(No: 2021YFA1101500)
详细信息
    作者简介:

    专家简介:黎纬明,华中科技大学同济医学院附属协和医院血液科主任医师、副教授、硕士生导师,附属协和医院血液病研究所白血病亚专科骨干。担任中国医药教育协会白血病专业委员会常务委员,中国医药教育协会转化医学专业委员会常务委员,湖北省智能医学学会血液专委会主任委员,湖北省抗癌协会血液肿瘤青年委员会副主任委员,湖北省医学生物免疫学会血液专委会慢粒分会主任委员,武汉市质控中心白血病工作组组长,湖北省科普作家协会医学科普创作专委会内科分会主任委员,武汉市和睿慢粒患者帮扶中心医学理事长。出版国内第一本慢粒相关患教书籍:《和黎医生一起认识慢粒》。主译权威慢粒学术专著:《慢性髓系白血病》。参与格列卫全球患者援助项目(GIPAP)等多项慢粒相关慈善计划。参与国内外多项慢粒相关临床研究及武汉协和医院国际标准化PCR检测实验室的建立。先后参与并承担了多项国家及省级科研课题,在Leukemia、Haematologica、Cancer等国内外专业期刊上发表论文60余篇。参与获得多项省部级科技进步奖。主编或参编多部学术著作

    通讯作者: 黎纬明, E-mail: lee937@126.com
  • 中图分类号: R733.7

Advances in the application of digital health tools for leukemia management

More Information
  • 靶向治疗、免疫疗法等前沿治疗手段为白血病患者提供了提高治疗反应率、延长生存、改善生活质量的机会,与此同时也带来了更为迫切的疾病管理临床需求,数字医疗技术为本领域提供了创新性的解决方案。文章旨在围绕以白血病为适应证的数字化医疗工具进行概要总结,为血液学家在诊疗实践中选用相关工具提供参考,并探讨未来的研究方向。
  • 加载中
  • [1]

    Patel NA, Butte AJ. Characteristics and challenges of the clinical pipeline of digital therapeutics[J]. NPJ Digit Med, 2020, 3(1): 159. doi: 10.1038/s41746-020-00370-8

    [2]

    Shaffer KM, Turner KL, Siwik C, et al. Digital health and telehealth in cancer care: a scoping review of reviews[J]. Lancet Digit Health, 2023, 5(5): e316-e327. doi: 10.1016/S2589-7500(23)00049-3

    [3]

    Kantarjian HM, Jain N, Garcia-Manero G, et al. The cure of leukemia through the optimist's prism[J]. Cancer, 2022, 128(2): 240-259. doi: 10.1002/cncr.33933

    [4]

    Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2025 update on diagnosis, therapy, and monitoring[J]. Am J Hematol, 2024, 99(11): 2191-2212. doi: 10.1002/ajh.27443

    [5]

    Hampel PJ, Parikh SA. Chronic lymphocytic leukemia treatment algorithm 2022[J]. Blood Cancer J, 2022, 12(11): 161. doi: 10.1038/s41408-022-00756-9

    [6]

    Kantarjian HM, DiNardo CD, Kadia TM, et al. Acute myeloid leukemia management and research in 2025[J]. CA Cancer J Clin, 2025, 75(1): 46-67. doi: 10.3322/caac.21873

    [7]

    Jabbour E, Short NJ, Jain N, et al. The evolution of acute lymphoblastic leukemia research and therapy at MD Anderson over four decades[J]. J Hematol Oncol, 2023, 16(1): 22. doi: 10.1186/s13045-023-01409-5

    [8]

    Collado-Borrell R, Escudero-Vilaplana V, Calles A, et al. Oncology patient interest in the use of new technologies to manage their disease: cross-sectional survey[J]. J Med Internet Res, 2018, 20(10): e11006. doi: 10.2196/11006

    [9]

    Bower H, Björkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population[J]. J Clin Oncol, 2016, 34(24): 2851-2857. doi: 10.1200/JCO.2015.66.2866

    [10]

    Marin D, Bazeos A, Mahon FX, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib[J]. J Clin Oncol, 2010, 28(14): 2381-2388. doi: 10.1200/JCO.2009.26.3087

    [11]

    Alrabiah Z, Alhossan A, Yun S, et al. Adherence to tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia: meta-analyses of prevalence rates by measurement method[J]. Blood, 2016, 128(22): 3610. doi: 10.1182/blood.V128.22.3610.3610

    [12]

    Pereira-Salgado A, Westwood JA, Russell L, et al. Mobile health intervention to increase oral cancer therapy adherence in patients with chronic myeloid leukemia(the REMIND system): clinical feasibility and acceptability assessment[J]. JMIR Mhealth Uhealth, 2017, 5(12): e184. doi: 10.2196/mhealth.8349

    [13]

    Ector GI, Westerweel PE, Hermens RP, et al. The development of a web-based, patient-centered intervention for patients with chronic myeloid leukemia(CMyLife): design thinking development approach[J]. J Med Internet Res, 2020, 22(5): e15895.

    [14]

    Narrillos-Moraza Á, Gómez-Martínez-Sagrera P, Amor-García MÁ, et al. Mobile apps for hematological conditions: review and content analysis using the mobile app rating scale[J]. JMIR Mhealth Uhealth, 2022, 10(2): e32826. doi: 10.2196/32826

    [15]

    Báez Gutiérrez N, Rodríguez Ramallo H, Fernández González M, et al. Smartphone apps for patients with hematologic malignancies: systematic review and evaluation of content[J]. JMIR Mhealth Uhealth, 2022, 10(9): e35851. doi: 10.2196/35851

    [16]

    Cheng F, Cui Z, Li Q, et al. Adherence to tyrosine kinase inhibitor and clinical outcomes in patients with chronic myeloid leukemia[J]. Int Immunopharmacol, 2023, 124(Pt A): 110847. doi: 10.1016/j.intimp.2023.110847

    [17]

    Verweij L, Ector GICG, Smit Y, et al. Effectiveness of digital care platform CMyLife for patients with chronic myeloid leukemia: results of a patient-preference trial[J]. BMC Health Serv Res, 2023, 23(1): 228. doi: 10.1186/s12913-023-09153-9

    [18]

    Ector GI, Verweij L, Hermens RP, et al. Filling the gaps of patient information needs and information perception in chronic myeloid leukemia with the patient-physician co-produced web-based platform CMyLife[J]. Patient Educ Couns, 2022, 105(3): 686-694. doi: 10.1016/j.pec.2021.06.025

    [19]

    Verweij L, Smit Y, Blijlevens NM, et al. A comprehensive eHealth implementation guide constructed on a qualitative case study on barriers and facilitators of the digital care platform CMyLife[J]. BMC Health Serv Res, 2022, 22(1): 751.

    [20]

    Verweij L, Metsemakers SJJPM, Ector GICG, et al. Improvement, implementation, and evaluation of the CMyLife digital care platform: participatory action research approach[J]. J Med Internet Res, 2023, 25: e45259. doi: 10.2196/45259

    [21]

    Stoyanov SR, Hides L, Kavanagh DJ, et al. Mobile app rating scale: a new tool for assessing the quality of health mobile apps[J]. JMIR Mhealth Uhealth, 2015, 3(1): e27. doi: 10.2196/mhealth.3422

    [22]

    陈丹, 王美懿, 田晨. 慢性淋巴细胞白血病/小淋巴细胞淋巴瘤靶向治疗的最新研究进展[J]. 中国实验血液学杂志, 2024, 32(2): 643-646.

    [23]

    @Point of Care. About @Point of care[EB/OL]. [2025-01-15]. https://atpointofcare.com/about-us/.

    [24]

    李秋柏, 吴迪. 老年急性髓系白血病诊治进展[J]. 临床血液学杂志, 2021, 34(5): 308-313. doi: 10.13201/j.issn.1004-2806.2021.05.004

    [25]

    Cortes JE, Mehta P. Determination of fitness and therapeutic options in older patients with acute myeloid leukemia[J]. Am J Hematol, 2021, 96(4): 493-507. doi: 10.1002/ajh.26079

    [26]

    李军民. 老年急性髓系白血病患者的治疗策略[J]. 临床血液学杂志, 2019, 32(5): 327-331. doi: 10.13201/j.issn.1004-2806.2019.05.001

    [27]

    Jensen-Battaglia M, Lin PJ, Sanapala C, et al. Changes in muscle performance among older adults with myeloid malignancies engaging in a mobile health(mHealth)exercise intervention: a single arm pilot study[J]. BMC Geriatr, 2025, 25(1): 22. doi: 10.1186/s12877-024-05668-w

    [28]

    Marvin-Peek J, Shelton V, Brassil K, et al. Effect of digital health coaching on self-efficacy and patient-reported outcomes in individuals with acute myeloid and chronic lymphocytic leukemia: a pilot randomized controlled trial[J]. Acta Haematol, 2024: 1-10.

    [29]

    王园园, 王婧婷, 俞苏燕, 等. 确诊初期急性淋巴细胞性白血病患儿父母需求的质性研究[J]. 解放军护理杂志, 2016, 33(4): 6-10.

    [30]

    Wang JT, Yao NL, Wang YY, et al. Developing"care assistant": a smartphone application to support caregivers of children with acute lymphoblastic leukaemia[J]. J Telemed Telecare, 2016, 22(3): 163-171. doi: 10.1177/1357633X15594753

    [31]

    Wang JT, Howell D, Shen NP, et al. mHealth supportive care intervention for parents of children with acute lymphoblastic leukemia: quasi-experimental pre-and postdesign study[J]. JMIR Mhealth Uhealth, 2018, 6(11): e195. doi: 10.2196/mhealth.9981

    [32]

    Breen S, Ritchie D, Schofield P, et al. The Patient Remote Intervention and Symptom Management System(PRISMS)-a Telehealth-mediated intervention enabling real-time monitoring of chemotherapy side-effects in patients with haematological malignancies: study protocol for a randomised controlled trial[J]. Trials, 2015, 16: 472. doi: 10.1186/s13063-015-0970-0

    [33]

    Shah AC, O'Dwyer LC, Badawy SM. Telemedicine in malignant and nonmalignant hematology: systematic review of pediatric and adult studies[J]. JMIR Mhealth Uhealth, 2021, 9(7): e29619. doi: 10.2196/29619

    [34]

    Yajima C, Bowe C, Barber D, et al. Telehealth interventions for supportive management and early recognition of treatment-related symptoms in patients with hematologic malignancies[J]. J Adv Pract Oncol, 2021, 12(8): 835-849.

    [35]

    Hradská K, Popková T, Skořupová M, et al. Management of treatment-related infectious complications in high-risk hemato-oncological patients via telemedicine[J]. Cancer Manag Res, 2022, 14: 1655-1661. doi: 10.2147/CMAR.S348923

    [36]

    Skiba MB, Harker G, Guidarelli C, et al. Using wearable inertial sensors to assess mobility of patients with hematologic cancer and associations with chemotherapy-related symptoms before autologous hematopoietic stem cell transplant: cross-sectional study[J]. JMIR Cancer, 2022, 8(4): e39271. doi: 10.2196/39271

    [37]

    Jacobsen M, Gholamipoor R, Dembek TA, et al. Wearable based monitoring and self-supervised contrastive learning detect clinical complications during treatment of Hematologic malignancies[J]. NPJ Digit Med, 2023, 6(1): 105. doi: 10.1038/s41746-023-00847-2

    [38]

    El Alaoui Y, Elomri A, Qaraqe M, et al. A review of artificial intelligence applications in hematology management: current practices and future prospects[J]. J Med Internet Res, 2022, 24(7): e36490. doi: 10.2196/36490

    [39]

    Srisuwananukorn A, Salama ME, Pearson AT. Deep learning applications in visual data for benign and malignant hematologic conditions: a systematic review and visual glossary[J]. Haematologica, 2023, 108(8): 1993-2010. doi: 10.3324/haematol.2021.280209

    [40]

    中华医学会血液学分会实验诊断学组. 人工智能辅助血细胞形态学检查的技术要求及其临床应用中国专家共识(2024年版)[J]. 中华血液学杂志, 2024, 45(4): 330-338.

    [41]

    Patel H, Shah H, Patel G, et al. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives[J]. Artif Intell Med, 2024, 152: 102883. doi: 10.1016/j.artmed.2024.102883

    [42]

    Alcazer V, Le Meur G, Roccon M, et al. Evaluation of a machine-learning model based on laboratory parameters for the prediction of acute leukaemia subtypes: a multicentre model development and validation study in France[J]. Lancet Digit Health, 2024, 6(5): e323-e333. doi: 10.1016/S2589-7500(24)00044-X

    [43]

    Eckardt JN, Hahn W, Röllig C, et al. Mimicking clinical trials with synthetic acute myeloid leukemia patients using generative artificial intelligence[J]. NPJ Digit Med, 2024, 7(1): 76. doi: 10.1038/s41746-024-01076-x

    [44]

    Mathews SC, McShea MJ, Hanley CL, et al. Digital health: a path to validation[J]. NPJ Digit Med, 2019, 2: 38. doi: 10.1038/s41746-019-0111-3

    [45]

    王子函, 刘皓然, 赵阳光, 等. 数字疗法产业发展现状[J]. 数字医学与健康, 2024, 2(4): 278-283.

  • 加载中
计量
  • 文章访问数:  252
  • 施引文献:  0
出版历程
收稿日期:  2025-02-10
刊出日期:  2025-03-01

返回顶部

目录