JAK2V617FASXL1和(或)TET2突变经典骨髓增殖性肿瘤患者的临床特征及合并血栓的危险因素分析

张阳, 桑丽娜, 陈雨, 等. JAK2V617F伴ASXL1和(或)TET2突变经典骨髓增殖性肿瘤患者的临床特征及合并血栓的危险因素分析[J]. 临床血液学杂志, 2024, 37(11): 771-776. doi: 10.13201/j.issn.1004-2806.2024.11.005
引用本文: 张阳, 桑丽娜, 陈雨, 等. JAK2V617FASXL1和(或)TET2突变经典骨髓增殖性肿瘤患者的临床特征及合并血栓的危险因素分析[J]. 临床血液学杂志, 2024, 37(11): 771-776. doi: 10.13201/j.issn.1004-2806.2024.11.005
ZHANG Yang, SANG Lina, CHEN Yu, et al. Analysis of clinical characteristics and risk factors for combined thrombosis in patients with classical myeloproliferative neoplasms with JAK2V617F with ASXL1 and/or TET2 mutations[J]. J Clin Hematol, 2024, 37(11): 771-776. doi: 10.13201/j.issn.1004-2806.2024.11.005
Citation: ZHANG Yang, SANG Lina, CHEN Yu, et al. Analysis of clinical characteristics and risk factors for combined thrombosis in patients with classical myeloproliferative neoplasms with JAK2V617F with ASXL1 and/or TET2 mutations[J]. J Clin Hematol, 2024, 37(11): 771-776. doi: 10.13201/j.issn.1004-2806.2024.11.005

JAK2V617FASXL1和(或)TET2突变经典骨髓增殖性肿瘤患者的临床特征及合并血栓的危险因素分析

详细信息

Analysis of clinical characteristics and risk factors for combined thrombosis in patients with classical myeloproliferative neoplasms with JAK2V617F with ASXL1 and/or TET2 mutations

More Information
  • 目的 研究JAK2V617FASXL1(或)TET2突变经典骨髓增殖性肿瘤(myeloproliferative neoplasm,MPN)患者的临床特征及分析合并血栓的危险因素。方法 对2017年1月—2021年3月在郑州大学第一附属医院就诊的符合WHO(2016)诊断分型标准且进行基因检测的初诊MPN患者进行回顾性研究,比较分析JAK2V617FASXL1和(或)TET2基因突变患者的临床特征及合并血栓的危险因素。结果 接受基因突变检测且资料完整的经典MPN患者367例,检出JAK2V617F基因单独突变(JAK2ASXL1-/TET2-)患者211例(A组),JAK2V617FASXL1突变(JAK2ASXL1+/TET2-)患者21例(B组),JAK2V617FTET2突变(JAK2ASXL1-/TET2+)患者22例(C组),JAK2V617FASXL1TET2共突变(JAK2ASXL1+/TET2+)17例(D组),共计271例。A、B、C、D 4组患者性别、初诊时WBC、HGB、中性粒细胞、PLT、LDH、脾大,差异均无统计学意义(P>0.05),而发病年龄、中性粒细胞计数与淋巴细胞计数比值(NLR)、初诊时血栓史差异有统计学意义(P<0.05)。高龄(≥60岁)、高WBC值(WBC≥10×109/L)、高HGB水平(男HGB≥160 g/L,女HGB≥150 g/L)、高LDH水平(LDH≥300 U/L)、NLR≥3、高血压及JAK2V617FTET2突变的患者均更易发生血栓事件(P<0.05)。结论 高龄、高WBC值、高HGB水平、高LDH水平、NLR≥3、高血压、PV及伴有ASXL1TET2突变是经典MPN患者发生血栓事件的危险因素。
  • 加载中
  • 表 1  JAK2V617FASXL1和(或) TET2突变经典MPN患者临床和实验室特征的比较

    特征 A组(n=211) B组(n=21) C组(n=22) D组(n=17) P
    性别(男/女)/例 95/116 10/11 8/14 9/8 0.76
    年龄/岁 62(60~64) 58(49~66) 55(50~60)1) 55(50~61)1) 0.01
    WBC/(×109/L) 14.52 (13.00~16.04) 12.51 (7.12~17.89) 12.70 (9.30~16.10) 12.71 (8.54~16.89) 0.43
    HGB/(g/L) 146(140~152) 130(106~154)2) 158(137~178) 134(107~161) 0.22
    PLT/(×109/L) 740(661~819) 761(477~1 044) 655(442~889) 846(379~1 313) 0.83
    LDH/(U/L) 344(320~367) 327(247~407) 296(227~365) 338(229~447) 0.55
    NLR 7(6~8) 4(3~5)1) 7(5~8) 6(3~8) 0.01
    PLR 429(385~473) 419(257~581) 505(275~734) 516(206~826) 0.80
    脾大/例 75 5 11 8 0.25
    血栓事件/例(%) 102(48.3) 5(23.8)1) 13(59.1) 12(70.6)2) 0.02
    动脉血栓/例
      脑血管事件 69 2 8 4 0.13
      心血管事件 25 1 2 4 0.33
      其他 7 2 3 3 0.02
    静脉血栓/例 1 0 0 1 0.08
    MPN亚型(PV/ET/MF)/例 65/117/29 6/10/5 10/8/4 4/8/5 0.33
    中位随访时间/月 67(66~69) 54(44~63) 50(48~53) 35(29~41) <0.01
    与A组比较,1)P<0.05;与B组比较,2)P<0.05。
    下载: 导出CSV

    表 2  BCR-ABL阴性经典MPN患者有无血栓事件的临床比较 例(%)

    特征 观察组(n=132) 对照组(n=139) χ2 P
    性别 59(44.7) 63(45.3) 0.971 >0.99
    年龄≥60岁 89(67.4) 64(46.0) 12.591 <0.01
    WBC≥10×109/L 88(66.7) 73(52.5) 5.602 0.02
    高HGB水平 68(51.5) 39(28.1) 15.592 <0.01
    PLT≥450×109/L 93(70.5) 89(64.0) 1.267 0.30
    LDH≥300 U/L 81(61.4) 67(48.2) 4.732 0.04
    NLR≥3 110(83.3) 98(70.5) 6.246 0.01
    高血压 70(53.0) 40(28.8) 16.515 <0.01
    糖尿病 11(8.3) 11(7.9) 0.016 >0.99
    肝大 2(1.5) 1(0.7) 0.392 0.61
    脾大 45(34.1) 54(38.9) 0.661 0.42
    MPN亚型 12.591 <0.01
      PV 53(40.2)1) 32(23.0)1)
      ET 68(51.5) 75(54.0)
      PMF 11(8.3)1) 32(23.0)1)
    基因型 9.371 0.02
      JAK2ASXL1-/TET2- 102(77.3)2) 109(78.4)2)
      JAK2ASXL1+/TET2- 5(3.8) 16(11.5)
      JAK2ASXL1-/TET2+ 13(9.8) 9(6.5)
      JAK2ASXL1+/TET2+ 12(9.1)2) 5(3.6)
    与ET比较,1)P<0.05;与JAK2ASXL1+/TET2-组比较,2)P<0.05。
    下载: 导出CSV
  • [1]

    Song JM, Hussaini M, Zhang HL, et al. Comparison of the mutational profiles of primary myelofibrosis, polycythemia vera, and essential thrombocytosis[J]. Am J Clin Pathol, 2017, 147(5): 444-452. doi: 10.1093/ajcp/aqw222

    [2]

    Viny AD, Levine RL. Genetics of myeloproliferative neoplasms[J]. Cancer J, 2014, 20(1): 61-65. doi: 10.1097/PPO.0000000000000013

    [3]

    Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms[J]. Blood, 2017, 129(6): 667-679. doi: 10.1182/blood-2016-10-695940

    [4]

    Lee AJ, Kim SG, Nam JY, et al. Clinical features and outcomes of JAK2V617F-positive polycythemia vera and essential thrombocythemia according to the JAK2V617F allele burden[J]. Blood Res, 2021, 56(4): 259-265. doi: 10.5045/br.2021.2021089

    [5]

    Ciboddo M, Mullally A. JAK2 (and other genes)be nimble with MPN diagnosis, prognosis, and therapy[J]. Hematology Am Soc Hematol Educ Program, 2018, 2018(1): 110-117. doi: 10.1182/asheducation-2018.1.110

    [6]

    Segura-Díaz A, Stuckey R, Florido Y, et al. Thrombotic risk detection in patients with polycythemia vera: the predictive role of DNMT3A/TET2/ASXL1 mutations[J]. Cancers, 2020, 12(4): 934. doi: 10.3390/cancers12040934

    [7]

    Wang YH, Lin CC, Lee SH, et al. ASXL1 mutation confers poor prognosis in primary myelofibrosis patients with low JAK2V617F allele burden but not in those with high allele burden[J]. Blood Cancer J, 2020, 10(10): 99. doi: 10.1038/s41408-020-00364-5

    [8]

    中华医学会血液学分会白血病淋巴瘤学组. 真性红细胞增多症诊断与治疗中国指南(2022年版)[J]. 中华血液学杂志, 2022, 43(7): 537-541.

    [9]

    中华医学会血液学分会白血病淋巴瘤学组. 原发性血小板增多症诊断与治疗中国专家共识(2016年版)[J]. 中华血液学杂志, 2016, 37(10): 833-836.

    [10]

    中华医学会血液学分会白血病淋巴瘤学组. 原发性骨髓纤维化诊断与治疗中国专家共识(2015年版)[J]. 中华血液学杂志, 2015, 36(9): 721-725.

    [11]

    Xiao ZJ, Zhang Y, Li L, et al. The Janus kinase 2(JAK2) V617F mutation in Chinese patients with chronic myeloproliferative disorders[J]. Haematologica, 2008, 93(5): 787-788. doi: 10.3324/haematol.12337

    [12]

    Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1[J]. Leukemia, 2010, 24(6): 1128-1138. doi: 10.1038/leu.2010.69

    [13]

    Ko M, Huang Y, Jankowska AM, et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2[J]. Nature, 2010, 468(7325): 839-843. doi: 10.1038/nature09586

    [14]

    Abdel-Wahab O, Mullally A, Hedvat C, et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies[J]. Blood, 2009, 114(1): 144-147. doi: 10.1182/blood-2009-03-210039

    [15]

    Tefferi A, Pardanani A, Lim KH, et al. TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis[J]. Leukemia, 2009, 23(5): 905-911. doi: 10.1038/leu.2009.47

    [16]

    Chia YC, Islam MA, Hider P, et al. The prevalence of TET2 gene mutations in patients with BCR-ABL-negative myeloproliferative neoplasms(MPN): a systematic review and meta-analysis[J]. Cancers, 2021, 13(12): 3078. doi: 10.3390/cancers13123078

    [17]

    Couronné L, Lippert E, Andrieux J, et al. Analyses of TET2 mutations in post-myeloproliferative neoplasm acute myeloid leukemias[J]. Leukemia, 2010, 24(1): 201-203. doi: 10.1038/leu.2009.169

    [18]

    Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics[J]. Blood, 2011, 118(14): 3803-3810. doi: 10.1182/blood-2011-02-339747

    [19]

    Metzeler KH, Maharry K, Radmacher MD, et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a cancer and leukemia group B study[J]. J Clin Oncol, 2011, 29(10): 1373-1381. doi: 10.1200/JCO.2010.32.7742

    [20]

    Feng YM, Li XP, Cassady K, et al. TET2 function in hematopoietic malignancies, immune regulation, and DNA repair[J]. Front Oncol, 2019, 9: 210. doi: 10.3389/fonc.2019.00210

    [21]

    Wang R, Gao X, Yu L. The prognostic impact of Tet oncogene family member 2 mutations in patients with acute myeloid leukemia: a systematic-review and meta-analysis[J]. BMC Cancer, 2019, 19(1): 389. doi: 10.1186/s12885-019-5602-8

    [22]

    Pethusamy K, Seethy A, Dhar R, et al. Loss of TET2 with reduced genomic 5-hmC is associated with adverse-risk AML[J]. Leuk Lymphoma, 2022, 63(14): 3426-3432. doi: 10.1080/10428194.2022.2126278

    [23]

    Scopim-Ribeiro R, Machado-Neto JA, Campos PDEM, et al. Ten-eleven-translocation 2(TET2) is downregulated in myelodysplastic syndromes[J]. Eur J Haematol, 2015, 94(5): 413-418. doi: 10.1111/ejh.12445

    [24]

    Busque L, Patel JP, Figueroa ME, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis[J]. Nat Genet, 2012, 44(11): 1179-1181. doi: 10.1038/ng.2413

    [25]

    Abdel-Wahab O, Dey A. The ASXL-BAP1 axis: new factors in myelopoiesis, cancer and epigenetics[J]. Leukemia, 2013, 27(1): 10-15. doi: 10.1038/leu.2012.288

    [26]

    Katoh M. Functional and cancer genomics of ASXL family members[J]. Br J Cancer, 2013, 109(2): 299-306. doi: 10.1038/bjc.2013.281

    [27]

    Shi H, Yamamoto S, Sheng MY, et al. ASXL1 plays an important role in erythropoiesis[J]. Sci Rep, 2016, 6: 28789. doi: 10.1038/srep28789

    [28]

    Yang H, Kurtenbach S, Guo Y, et al. Gain of function of ASXL1 truncating protein in the pathogenesis of myeloid malignancies[J]. Blood, 2018, 131(3): 328-341. doi: 10.1182/blood-2017-06-789669

    [29]

    Dunbar A, Park Y, Levine R. Epigenetic dysregulation of myeloproliferative neoplasms[J]. Hematol Oncol Clin North Am, 2021, 35(2): 237-251. doi: 10.1016/j.hoc.2021.01.001

    [30]

    Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies[J]. J Clin Oncol, 2011, 29(5): 573-582. doi: 10.1200/JCO.2010.29.8711

    [31]

    Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet[J]. J Clin Oncol, 2011, 29(6): 761-770. doi: 10.1200/JCO.2010.31.8436

    [32]

    Barbui T, Finazzi G, Carobbio A, et al. Development and validation of an International Prognostic Score of thrombosis in World Health Organization-essential thrombocythemia(IPSET-thrombosis)[J]. Blood, 2012, 120(26): 5128-5133. doi: 10.1182/blood-2012-07-444067

    [33]

    Liu W, Östberg N, Yalcinkaya M, et al. Erythroid lineage JAK2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis[J]. J Clin Invest, 2022, 132(13): e155724. doi: 10.1172/JCI155724

    [34]

    Paik JH, Choe JY, Kim H, et al. Clinicopathological categorization of Epstein-Barr virus-positive T/NK-cell lymphoproliferative disease: an analysis of 42 cases with an emphasis on prognostic implications[J]. Leuk Lymphoma, 2017, 58(1): 53-63. doi: 10.1080/10428194.2016.1179297

    [35]

    Jaiswal S, Natarajan P, Silver AJ, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease[J]. N Engl J Med, 2017, 377(2): 111-121. doi: 10.1056/NEJMoa1701719

    [36]

    Fuster JJ, MacLauchlan S, Zuriaga MA, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice[J]. Science, 2017, 355(6327): 842-847. doi: 10.1126/science.aag1381

    [37]

    Rtmann CA, Kent DG, Nangalia J, et al. Effect of mutation order on myeloproliferative neoplasms[J]. N Engl J Med, 2015, 372(7): 601-612. doi: 10.1056/NEJMoa1412098

    [38]

    Delhommeau F, Dupont S, Della Valle V, et al. Mutation in TET2 in myeloid cancers[J]. N Engl J Med, 2009, 360(22): 2289-2301. doi: 10.1056/NEJMoa0810069

    [39]

    Shah SZ, Raza N, Irfan M. Frequency of raised serum lactate dehydrogenase in patients with JAK2 positive polycythaemia vera[J]. J Ayub Med Coll Abbottabad, 2021, 33(3): 447-450.

  • 加载中
计量
  • 文章访问数:  227
  • 施引文献:  0
出版历程
收稿日期:  2024-05-17
刊出日期:  2024-11-01

返回顶部

目录